Category: Amateur Radio

Decoding the LilacSat-1 FM to Digital Voice Transponder

LilacSat-1 is an educational CubeSat built by students from the Harbin Institute of Technology (HIT) in China. It was recently launched from the ISS on 25 May 2017 as part of the QB50 science experiment to explore the lower thermosphere, and it is expected to stay in orbit for about 3 months. Apart from BPSK telemetry at 145.935 MHz, LilacSat-1 is interesting because it contains on board an FM to Codec2-BPSK digital voice amateur radio transponder at 145/436 MHz (uplink/downlink). It is probably the first amateur radio satellite to contain an FM to digital voice transponder.

To decode LilacSat-1 digital voice and telemetry you can use a Linux live CD provided by HIT, or download the GNU Radio decoder directly from the LilacSat-1 information page on the HIT website. The GNU Radio program can be used with any GNU Radio compatible SDR, such as an RTL-SDR.

Over on his blog, destevez has also created a lower latency digital voice decoder for LilacSat-1 that can found in the gr-satellites GNU Radio package, which contains decoders for multiple satellites as well. Destevez has also written about the Codec2 implementation used in LilacSat-1 in one of his previous posts.

An example of LilacSat-1 being decoded has also been uploaded by YouTube by Scott Chapman. In his test he used an RTL-SDR to work the pass live, but in the video shows an offline decoding received by his SDRplay which was also monitoring the same pass.

DK8OK Review of the Airspy and SpyVerter

Recently DK8OK wrote in to us and wanted to share his latest review of the Airspy and SpyVerter combo (pdf). His review focuses on HF usage and he shows various examples of HF signals that he has received with the Airspy+SV such as the CHU time station, STANAG, DRM, ALE, HFFAX, VOLMET and HFDL. He also shows some tricks for optimizing HF reception, a tutorial on performing multi-channel audio recording and decoding in SDR-Console, a tutorial on playing and analyzing recorded files as well as some examples of weak signal reception.

Overall DK8OK praises the Airspy+SV combo citing it’s excellent dynamic range as one of the reasons it performs so well.

We should note that for prospective buyers, the Airspy team is currently working on a new complimentary solution for HF monitoring called the Airspy HF+. This will have extremely high dynamic range (even higher than the Airspy+SV combo), but it will have a smaller bandwidth. So the Airspy+SV combo will still be the best for monitoring a wide 9 MHz chunk of the HF band, whilst the HF+ will be the best for getting into those very hard to receive signals.

Update: The paper is now also available in French.

Multi-channel decoding in SDR-Console with the Airspy+SypVerter
Multi-channel decoding in SDR-Console with the Airspy+SpyVerter

Testing SSTV Transmission with the HackRF and Portapack

Last week we made a post about the HackRF Portapack, and gave some examples of it in action. Recently the furtek Havoc firmware for the portapack was updated, and it now supports SSTV transmission. Over on Twitter, Giorgio Campiotti‏ @giorgiofox has uploaded a video showing an example transmission in action.

In the video the HackRF with Portapack transmits a test SSTV image to an Elecraft K3 ham radio, which is linked to a PC. SSTV decoding software on the PC turns the data back into an image.

SSTV stands for ‘Slow Scan TV’, and is a method used by hams to send images over radio. Typically this activity occurs on HF frequencies. Sometimes the ISS transmits SSTV images down to earth as well to commemorate special events.

Listening to February 2017 HAARP Experiments with an HF Capable SDR

This year at the end of February HAARP (High Frequency Active Auroral Research Program) scientists are planning to run several experiments that involve transmission. HAARP is a high power ionospheric research radio transmitter in Alaska, which typically transmits in the 2.7 – 10 MHz frequency region. The transmissions are powerful enough to create artificial auroras in the sky. Due to a lack of funding HAARP research was shut down in May 2013, and then later given to the University of Alaska Fairbanks (UAF) in 2015.

UAF plans to activate HAARP again at the end of Feburary, so it seems that it would be interesting to receive the waveforms with an HF capable SDR such as the RTL-SDR v3, or with an upconverter like the SpyVerter. Under some conditions the signal could propagate all over the world. It seems that the researchers are also interested in reception reports from listeners and they plan to post updates closer to the dates of transmission. The full press release reads:

The University of Alaska Fairbanks Geophysical Institute is planning its first research campaign at the High Frequency Active Auroral Research Program facility in Gakona.

The High Frequency Active Auroral Research Program facility near Gakona includes a 40-acre grid of towers to conduct research on the ionosphere. The facility was built and operated by the U.S. Air Force until August 2015, when ownership was transferred to UAF’s Geophysical Institute.

At the end of February, scientists will use the HAARP research instrument to conduct multiple experiments, including a study of atmospheric effects on satellite-to-ground communications, optical measurements of artificial airglow and over-the-horizon radar experiments.

Members of the public can follow one of the experiments in real time. Chris Fallen, assistant research professor in space physics, will be conducting National Science Foundation-funded research to create an “artificial aurora” that can be photographed with a sensitive camera. Observers throughout Alaska will have an opportunity to photograph the phenomenon, which is sometimes created over HAARP during certain types of transmissions.

Under the right conditions, people can also listen to HAARP radio transmissions from virtually anywhere in the world using an inexpensive shortwave radio. Exact frequencies of the transmission will not be known until shortly before the experiment begins, so follow @UAFGI on Twitter for an announcement.

For more details on the dates and times of Fallen’s experiments, as well as information on how to observe, visit https://sites.google.com/alaska.edu/gakonahaarpoon/. Information is also available at the HAARP website, the UAF http://gi.alaska.edu/haarp-0 and the official UAF HAARP Facebook page, https://www.facebook.com/UAFHAARP/.

Operation of the HAARP research facility, including the world’s most capable high-power, high-frequency transmitter for study of the ionosphere, was transferred from the U.S. Air Force to UAF in August 2015.

On their Google sites page they write how to participate:

Anybody who wants to participate and follow HAARP experiments should follow the official and unofficial announcements linked at the top of this page. There are two main ways to participate in the campaign: by listening to the radio transmissions from HAARP itself or by photographing artificial auroras created by HAARP. Amateur (Ham) radio operators can also use temporary ionosphere irregularities created by HAARP to open new propagation modes for their own transmissions.

A shortwave radio and knowledge of the time and frequency of the HAARP transmissions provides opportunities to “listen in” since the radio wave energy often (but not always) propagates very large distances, sometimes worldwide! Shortwave radios capable of receiving frequencies in the same range that HAARP can transmit, between approximately 2.7 and 10 MHz (2700 and 10,000 kHz) allow anyone to hear HAARP transmissions provided long-distance radio propagation conditions are sufficient and the radio is tuned to one of the frequencies where HAARP is transmitting. Ham radio operators also have an opportunity to reflect (or “bounce”) their own transmissions, typically in the HF, VHF or UHF bands, off ionosphere irregularities created above HAARP during high-power experiments. This creates propagation modes that would normally only be possible during certain space weather events such as aurora.

The video below shows one of the last scheduled HAARP transmissions from when it was still under the control of the US Air Force.

[First seen on swling.com]

 

A Pre-Built Raspberry Pi Image for using an RTL-SDR as an APRS RX iGate

Keith Maton (G6NHU) wrote in and wanted to share his new ready to go APRS RX iGate image for the Raspberry Pi. APRS stands for “Amateur Packet Reporting System”, and is a type of packet radio communications system used by Amateur Radio operators. They often use them to transmit short mail messages, weather sensor updates, track vehicles and for various other purposes. An iGate allows APRS messages to be transmitted over the all world via the internet via a signal chain such as: RF->iGate RX->Internet->iGate TX->RF.  To run an iGate you should be a radio amateur with a callsign. A global aggregation of APRS broadcasts received by iGates can be seen at aprs.fi.

An RTL-SDR can be used to receive APRS packets easily and many amateur radio enthusiasts have been setting up APRS RX only iGates using the “direwolf” decoding software. Keith’s image simplifies the process of installing and configuring software significantly by proving a plug and play image that you just burn to an SDcard and plug into your Raspberry Pi. His post also explains how to configure the iGate correctly.

iGate Raspberry Pi Image Running
iGate Raspberry Pi Image Running

A Tutorial on Receiving WSPR with an RTL-SDR V3

Over on YouTube user Veryokay has uploaded a video that shows how he uses the HF direct sampling mode on one of our V3 RTL-SDR’s to receive WSPR signals. WSPR (pronounced “Whisper”) is short for Weak Signal Propagation Reporting, and is a HF ham mode typically run on very low power levels such as 1W. The data from WSPR reception can be used to determine how good or bad HF propagation is currently around the world as each WSPR message contains the callsign, 6-digit locator and the transmit power level used.

For the antenna Veryokay uses a simple random wire antenna directly connected to the SMA port of the V3 up on top of the roof of his apartment building. This gets him reception good enough to receive many WSPR signals. Then together with SDR#, VB Cable and the WSPR-X decoder software, signals can be received and decoded.

He has also uploaded a document detailing the instructions in text and image form at bit.ly/wspr-rtlsdr.

Setting up Propagation Triggered Spectrum Recording

Over on the SDRplay blog and forums OH2BUA has been sharing how he has set up ‘propagation triggered recording’ by continuously monitoring JT65/JT9 signals with his SDRplay. The idea is that you leave the radio on receiving all night, and set it to automatically start recording IQ files if good propagation conditions occur as determined by the locations received from the JT65/JT9 signal. This may yield some interesting far off stations that can be listened to in the morning, whilst weeding out hours where nothing but commonplace local stations are heard. The software is a simple Windows batch file that works together to coordinate HDSDR and JTDX. It should work with any HF capable SDR.

JT65/JT9 are weak signal propagation HF modes (also known as WSJT modes) that can be decoded all around the world, even with very weak reception thanks to strong digital error correction. They can often be used to determine propagation conditions by determining where successfully decoded messages are being sent from.

OH2BUA writes:

I have made a set of scripts and other files which can be used to build a system which monitors JT65/JT9 (digital modes) amateur radio traffic on 160m/1.8MHz band, and if nice propagation to area you are interested in exists, a MW-BC-band recording is started. When the conditions fall off, the recording is stopped.

There is an attached zip-file containing all the necessary stuff. Sorry this is a windows thing – but easily portable also for linux. Create C:\bat\ and drop all there. Have a look, starting from README.

The default example is to start a MW-band I/Q-recording, if North American ham signals are heard – but it is fully modifiable according to your target when in comes to areas, bands, schedules etc.

The files are available as an attachment to the forum post.

Where WSJT Modes are located (slideplayer.com/slide/4310450)
Where WSJT Modes are located (slideplayer.com/slide/4310450)

Showing the HF Interference Problem from Ethernet over Powerline Devices

Over on our YouTube channel we’ve uploaded a new video that shows how bad the interference from Ethernet over Power devices can be. Ethernet over Power, Powerline Networking, Powerline Communications or ‘HomePlug’ is a technology that allows you to use any of your household power outlets as an internet Ethernet port, completely eliminating the need for runs of Ethernet cabling. They are capable of high speeds and can be used anywhere in the house assuming the two plugs are on the same power circuit.

Unfortunately these devices tend to wipe out almost the entire HF spectrum for anyone listening nearby. As household powerline cables are not shielded for RF emissions they radiate in the HF spectrum quite heavily. In the video we demonstrate what the HF spectrum looks like with one of these devices used in the house. The particular device used was a TP-Link brand adapter, and a WellBrook Magnetic Loop antenna was used outdoors, with the null facing the house. An Airspy R2 with SpyVerter was used to view the spectrum.

The video shows that even when the network is idling there are several brief bursts of noise all over the spectrum. Then when a file is downloaded almost the entire spectrum is completely wiped out.

Interestingly from the video it appears that the amateur radio frequencies are actually carefully notched out and those frequencies remain relatively clean. Most manufacturers of these devices appear to have worked with the ARRL to please ham radio enthusiasts, but SWLers will likely be in trouble if any of these devices are used in your house or neighbors house.