Category: Applications

Determining the Radiant of Meteors using the Graves Radar

With an RTL-SDR or other radio it is possible to record the echoes of the 143.050 MHz Graves radar bouncing off the ionized trails of meteors. This is called meteor scatter and it is usually used to count the number of meteors entering the atmosphere. Amateur radio astronomers EA4EOZ and EB3FRN decided to take this idea further and synchronised their separate receivers and recordings with a PPS GPS signal in order to determine the radiant of the meteors they detected. They write:

The idea was to analyze the Doppler from the head echoes and and see if something useful can be extracted from them.

We detected a meteor from two distant locations and measured Doppler and Doppler slope at those locations. The we tried to find solutions to the meteor equation by brute force until we obtain a big number of them. Then we plotted those solutions in the sky and we see some of them pass near a known active radiant at the time of observation. Then, we checked the velocity of those solutions near the known radiant and found they are quite similar to the velocity of the known radiant, so we concluded probably they come from that radiant.

But they can come from everywhere else in the sky along the solution lines! There is not guarantee these meteors to be Geminids, although probabilities are high. Once all the possible radiants of a meteor are plotted into the sky, there is no way to know who of all them was the real one. Doppler only measurement from two different places is not enough to determine a meteor radiant. But don’t forget with some meteors, suspect to come from a known shower, the possible results includes the right radiant at the known meteor velocity for that radiant, so there seems to be some solid base fundamentals in this experiment.

Initially they ran into a little trouble with their sound cards, as it turns out that sound cards don’t exactly sample at their exact specified sample rate. After properly resampling their sound files they were able to create a stereo wav file (one receiver on the left channel, one receiver on the right channel) which showed that the doppler signature was different in each location. The video below shows this wav file.

Using the information from their two separate recordings, they were able to do some doppler math, and determine a set of possible locations for the radiant of the meteors (it was not possible to pinpoint the exact location due to there being no inverse to the doppler equation). The radiant of a meteor shower is the point in the sky at which the meteors appear to be originating from. Although their solution couldn’t exactly pinpoint the location, some of the possible solutions from most meteors passed through the known radiant of the Geminids meteor shower. With more measurement locations the exact location could be pinpointed more accurately.

Possible solutions for the radiant of the Geminids meteor shower.
Possible solutions for the radiant of several meteors detected during the Geminids meteor shower.

Wireless Door Bell 433 MHz ASK Signal Analysis with a HackRF

Paul Rascagneres, an RF experimenter has recently uploaded a document detailing his efforts at reverse engineering a wireless doorbell (pdf file) with a 433 MHz Amplitude Shift Keyed (ASK) signal with his HackRF software defined radio. The HackRF is a SDR similar to the RTL-SDR, but with a wider available bandwidth and transmit capabilities.

To reverse engineer the doorbell, Paul used GNU Radio with the Complex to Mag decoder block to receive and demodulate the ASK signal. Once demodulated he was able to visually see the binary modulated waveform, and manually obtain the serial bit stream. From there he went on to create a GNU Radio program that can automatically obtain the binary strings from the ASK waveform.

In order to replay the signal, Paul found that the simplest way was to use the hackrf_transfer program, which simply records a signal, and then replays it via the HackRF transmitter on demand. With this method Paul was able to ring his doorbell via the HackRF.

Paul also confirmed his SDR results with an Arduino and 433 MHz transceiver. He then took it a step further and used the Arduino to create a system that could automatically receive and replay signals at 433 MHz and 315 MHz.

Decoding an ASK modulated bitstream.
Decoding an ASK modulated bitstream.

Receiving SSTV from FleetSatcom Pirates

Radio pirates often make use of the Fleetsatcom satellites to send and receive slow scan television (SSTV) pictures over a wide distance. Fleetsatcom is a satellite communications system used by the US Navy for radio communications. Since these satellites are simply radio repeaters with no authentication mechanisms, pirates soon discovered that they could take over the satellites for their own use.

Over on YouTube user LEGION ELMELENAS has uploaded a video showing his reception of some pirates transmitting a SSTV image at a Fleetsatcom frequency of 252 MHz. To receive the image he used a home made turnstile antenna, an RTL-SDR dongle, SDR# and the RX-SSTV decoder. The image appears to be a photo of a pirates son.

We previously posted more information about Fleetsatcom SSTV pirates in this post.

RTL-SDR Tutorial: Decoding Meteor-M2 Weather Satellite Images in Real-Time with an RTL-SDR

Back in September last year we posted a tutorial written by reader Happysat which showed how to receive and decode high resolution Meteor-M2 LRPT satellite images. The tutorial required several offline manual processing steps to be performed and therefore could not decode the image in real time.

Now Vasili, a SDR# plugins programmer, and Oleg who is the coder of Lrptdecoder have combined ideas to create a new QPSK demodulator plugin for SDR# that allows the real time reception and decoding of Meteor-M2 LRPT images (in Russian use Google translate). The demodulator also offers the advantage of faster and longer signal locking, and also works much better with weak signals compared to the old method. 

At the same time Vasili has also released another plugin called DDE Tracker which allows a satellite tracking program such as Orbitron to interface with and control SDR#. The plugin can be downloaded on the same page as the QPSK plugin. This is similar to the already existing DDE plugins, but now also comes with a scheduler which allows users to automatically schedule recordings of Meteor-M2 and NOAA satellite passings.


To help users get set up with this new method, Happysat has again come forth with another tutorial which can be downloaded here (.pdf) (.docx) (.txt w/ images in .rar). At first glance the tutorial may seem more complicated than the old method, but in the end it is a much faster and more efficient way at decoding LRPT images. The basic steps involve setting up Orbitron and the DDE plugin to automatically track the Meteor-M2 LRPT satellite and signal, and then setting up the QPSK plugin and the new version of Lrptdecoder to talk to one another in real time via a local TCP connection.

Real time decoding of Meteor-M2 with two new SDR# Plugins.
Real time decoding of Meteor-M2 with two new SDR# Plugins.
QPSK Decoder SDR# Plugin
QPSK Demodulator SDR# Plugin
DDE Orbitron Interface SDR# Plugin.
DDE Orbitron Interface SDR# Plugin.


One more Meteor-M2 related thing to look forward to in the future is the AMIGOS project which stands for Amateur Meteor Images Global Observation System. This will be a system where users around the world can contribute LRPT images through the internet to create a worldwide LRPT receiver. Oleg of LrptDecoder writes:

There is an idea to merge LRPT receive amateur radio stations in a network through the Internet and create a super LRPT receiver.
I see the benefit of professionals from the control center in the operational monitoring of the condition of the equipment MSU-MR, and for fans of the fullest reception of images from Meteor-M.

All is in testing phase and need some setup for the servers,  data is beeing shared thru a VPN connection to a central server which will have a continous flow of images from all over the world.
Users can join and share in realtime the data more info on:

What is Meteor-M2?

If you don’t understand what all this is about: The Meteor-M N2 is a polar orbiting Russian weather satellite that was launched on July 8, 2014. Its main missions are weather forecasting, climate change monitoring, sea water monitoring/forecasting and space weather analysis/prediction.

The satellite is currently active with a Low Resolution Picture Transmission (LRPT) signal which broadcasts live weather satellite images, similar to the APT images produced by the NOAA satellites. LRPT images are however much better as they are transmitted as a digital signal with an image resolution 12 times greater than the aging analog NOAA APT signals. Some example Meteor weather images can be found on this page and the satellite can be tracked in Orbitron or online.

A software defined radio such as the low cost RTL-SDR, or the higher end Airspy and Funcube dongles can be used to receive these signals.

An Example LRPT Image Received with an RTL-SDR from the Meteor-2 M2.
An Example LRPT Image Received with an RTL-SDR from the Meteor-2 M2.


The DDE plugin can also be used for tracking NOAA satellites. Some people have been having trouble with set up. Happysat writes a solution:

Download TLE from: Make sure the names are the same in DDE Sat Tracking Client schedule. Same one as i post in the howto –

Listening to a Radio Amateur Stratosphere Balloon with an RTL-SDR

Over on YouTube user kpappa has uploaded a video showing his reception of the J43VHF radio amateur stratosphere balloon with an RTL-SDR dongle and discone antenna. On the 10th of May radio amateurs in Greece launched a high altitude balloon. The balloon carried a transceiver payload which allowed amateurs to talk to each other via the balloon at a frequency of 144.200 MHz. The video shows good reception of the balloon and also shows it’s tracking via

More information about the balloon can be found at and

The high altitude balloon's radio payload recovered after landing.
The high altitude balloon’s radio payload recovered after landing.

Tutorial on Combining and Rebroadcasting ADS-B Feeds with ModeSMixer2

Last week we posted about how the author of the blog had written a tutorial on the use of ModeSDeco2 for decoding ADS-B with an RTL-SDR. Now the same author has continued his tutorial by writing how to use the ModeSMixer2 software to combine multiple ADS-B datastreams into a single stream. This is useful for example if you have several RTL-SDR’s at different locations receiving ADS-B data. ModeSMixer2 can also combine data even if you are using different ADS-B decoding software such as dump1090, RTL1090 or ADSB#.

The author’s tutorial goes over setting up ModeSDeco2 to broadcast data over the network, setting up ModeSMixer2 to receive data, and also setting up the basestation.sqb file to add airline logos and silhouettes to the web based GUI of ModeSMixer2.

Screenshot of the ModeSMixer2 web based GUI.
Screenshot of the ModeSMixer2 web based GUI.

New Version of Digital Speech Decoder DSD+ 1.071 Released

The latest version of Digital Speech Decoder+ (DSD+) has just been released, bringing it up to version 1.071. There appears to be no changelog, so we are unsure as to what is new, but one obvious change is that they now include a new program called FMP which is a simple NFM demodulator, similar to rtl_fm, although it does have a GUI with point and click tuning. FMP can be used as a replacement for SDR# or similar software, and is especially useful to use on low end devices such as netbooks.

An active discussion on the latest release of this software can be found in this thread on the forums.

The FMP NFM demodulator tuned to a MotoTRBO signal.
The FMP NFM demodulator tuned to a MotoTRBO signal.

DSD+ is a Windows program which can be used to decode and listen to digital voice protocols such as D-STAR, NXDN4800, NXDN9600, DMR/MotoTRBO, P25 Phase 1, X2-TDMA and ProVoice with an RTL-SDR or other radio. On some DMR systems you may also be able to use the included LRRP software, which allows you to view the GPS locations of broadcasting radios. The last major release was version 1.05.


The DSD+ team are now also offering a “fast lane” early access program, which for a small donation will allow you to have early access to new and upcoming DSD+ features. They aim to release a new update to donators every 7 to 30 days, while stable public releases will continue to be released every 4 to 6 months. The donation costs $10 for one year of early access, and $25 for lifetime updates. Some features they are currently working on include:

  • Better tablet support
  • IDAS/NEXEDGE/Cap+/Con+/TIII trunk voice following
  • Per-call audio recordings
  • Other needed DSD+ upgrades
  • FMP upgrades
    • Squelch
    • Drift tracking
    • Selectable sampling rates
    • Adjustable windows sizes
    • TCP client/server mode (eliminates VAC / VB-C)
    • Multiple VFOs
    • Airspy support

Reverse Engineering a Radio Weather Station with an RTL-SDR

On his blog Josef Gajdysek has posted about his experience with using an RTL-SDR to reverse engineer the radio protocol used by his home weather station. Josef’s weather station is an ISM band device and transmits at 433 MHz. First he opened up GQRX and tuned to his weather station’s transmit frequency of 433.6 MHz and recorded some audio in AM mode. Josef initially assumed that the device would use on-off-keying (OOK) to encode the data. However, when he opened the sound file in Audacity and looked at it’s waveform he found that the weather station instead used Differential Pulse Position Modulation. In this modulation scheme the distance between pulses determines whether or not the binary bit is high or low.

Differential Pulse Position Modulation in Audacity
Differential Pulse Position Modulation in Audacity

To decode this Josef then wrote a python script to measure the distance between pulses and thus convert the pulses into a binary string. Then by decoding and analyzing the captured packets he was able to isolate the checksum, temperature, channel, and status flags. Knowing all this information finally allowed him to create a real time decoder that uses rtl_fm. The python script can be downloaded from his post.

The weather station transmitter.
The weather station transmitter.