Category: HF

Lowering the Noise Floor on HF with High Quality Coax

Bonito is a company that sells various products such as their own small active antennas. Some examples are the Bono-Whip (20kHz – 300 MHz), GigaActiv (9kHz – 3 GHz) and the MegaLoop (9kHz – 200 MHz). 

Over on their blog they’ve uploaded a post titled “why even good antennas need good coax cable”. The post explains why high quality heavy shielded coax cable may be required to receive HF signals in noisy environments. The author writes how even placing an antenna in a quiet area outdoors may not work if the coax is still run through an high interference environment, such as through a house.

Typically RG58 cable is most commonly used with HF antennas. However, the author noticed that when using RG58 he was still receiving FM stations, even though the antenna that he was using was a MegaLoop with a built in broadcast FM filter. After switching his RG58 cable to H155 coax, the FM station disappeared. H155 coax is low loss and designed for GHz level frequencies, so it has much better shielding from its tighter braid.

The images below also show the difference in noise floor the author saw after replacing all his RG58 with H155 coax. 

http://ReceptionwithRG58Coax

Reception with RG58 Coax

http://ReceptionwithH155Coax

Reception with H155 Coax

Lowering the Noise Floor on HF with High Quality Coax

Bonito is a company that sells various products such as their own small active antennas. Some examples are the Bono-Whip (20kHz – 300 MHz), GigaActiv (9kHz – 3 GHz) and the MegaLoop (9kHz – 200 MHz). 

Over on their blog they’ve uploaded a post titled “why even good antennas need good coax cable”. The post explains why high quality heavy shielded coax cable may be required to receive HF signals in noisy environments. The author writes how even placing an antenna in a quiet area outdoors may not work if the coax is still run through an high interference environment, such as through a house.

Typically RG58 cable is most commonly used with HF antennas. However, the author noticed that when using RG58 he was still receiving FM stations, even though the antenna that he was using was a MegaLoop with a built in broadcast FM filter. After switching his RG58 cable to H155 coax, the FM station disappeared. H155 coax is low loss and designed for GHz level frequencies, so it has much better shielding from its tighter braid.

The images below also show the difference in noise floor the author saw after replacing all his RG58 with H155 coax. 

http://ReceptionwithRG58Coax

Reception with RG58 Coax

http://ReceptionwithH155Coax

Reception with H155 Coax

Analyzing HF Over the Horizon Radar in GNU Radio

Over the Horizon radar is typically used at HF frequencies and is used to detect targets from hundreds to thousands of kilometers away from the radar station. On HF they are very common and can be easily heard as continuous or bursty buzzing sounds.

Over on his blog Daniel Estevez writes how he was inspired by Balint Seebers GRCon16 talk to perform his own investigations into HF OTH radar. Daniel first analyzed a recorded IQ signal of a presumed Russian radar in Audacity, and noticed that it consisted of 15 kHz wide pulses repeated at 50 Hz intervals. He then used GNU Radio and the Quadrature Demod block to FM demodulate the pulse and see how the frequency changes over time. From this he was able to determine the original transmitted radar pulse characteristics

Next he performs pulse compression, which is essentially a cross correlation of the received pulse and transmitted pulse which was determined from the characteristics found earlier. The signal being received at Daniels location is distorted, because it will arrive from multiple paths, since the signal will bounce of multiple layers of the ionosphere. With this pulse compression technique Daniel is able to determine the time of flight for the different multi-path components of the received pulse. By graphing all the results over time he was able to obtain this image illustrating relative propagation distance over time.

Check out Daniels post for the full details and his code.

Ionosphere Propagation Graph
Ionosphere Propagation Graph

Receiving CB Radio with an RTL-SDR Dongle

Back in July we posted a story by Mario Fillipi (N2HUN) who wrote an article about using the RTL-SDR to receive CB radio, and how while the CB radio heyday is over, there are still opportunities for good listening available today.

Recently Mario has posted a new article on swling.com where he discusses his CB radio listening hobby further. To listen to the CB band at 26.965 – 27.405 MHz he uses an RTL-SDR dongle together with a ham-it-up upconverter. While an upconverter is not required since most RTL-SDR dongles typically tune down to 24-25 MHz, he finds that using one helps because it can help block out interference from the strong broadcast FM band.  We note that you could also use one of our BCFM Block filters for the same purpose.

Mario notes that recently he noticed the CB band was open during the night. Usually the frequencies that CB radio uses propagate best during the daytime, and poorly at night. But on some occasions it can open up at night as well. He writes that on some occasions during a winters night during a snowstorm he has been able to receive the world on CB, from Europe, the Caribbean and Australia.

CB Band Voice in SDR# with an RTL-SDR and Ham-it-up Upconverter
CB Band Voice in SDR# with an RTL-SDR and Ham-it-up Upconverter

New Comparison Videos from Leif SM5BSZ: Airspy vs SDRplay vs Several Other SDRs

Over on YouTube Leif SM5BSZ has uploaded two new videos. The first video shows a set up that compares the Airspy and the SDRplay RSP on several lab tests that test for dynamic range performance at various frequency offsets. The Airspy definitely shows better results, but Leif notes that the differences are fairly small. The Airspy and SDRplay are two SDRs that compete in the mid range SDR price bracket.

Smaller is better, where each value represents the amount of attenuation required before saturation
Smaller is better. Each value represents the amount of attenuation used (in dBm) that causes a 3dB loss from reciprocal mixing
https://www.youtube.com/watch?v=Vg4sz1B5LCo

As lab tests can only approximate real world performance, in the next video Leif does a HF reception comparison on a real world antenna. In this video he compares our RTL-SDR.com V3 in the special direct sampling HF mode, a Funcube Pro+, SDRplay RSP, Airspy+Sypverter, Afedri Net, and an FDM-S1. The test injects an artificial signal and combines signals from a real antenna via an adjustable attenuator. Leif adjusts the attenuator to increase the antenna signals until the test signal strength is degraded by 3dB from reciprocal mixing/overload. That attenuation setting is then recorded.

The results for the daytime and nighttime results results rank the SDR’s in order from best to worst: FSM-S1 ($400 + shipping), Afedri ($259 + shipping), Airspy+Spyverter ($218 + shipping/$149 + shipping (mini)), SDRplay ($129 + shipping), Funcube Pro+ ($155 + shipping), RTL-SDR.com V3 direct sampling ($20 incl shipping). Interestingly the performance seems to correlate nicely with the unit cost. Of course the V3 in direct sampling mode can be significantly improved by using filtering on the front end, or just by using an upconverter and quadrature mode instead.

At the end of the video Leif also shows a final ranking of the HF performance of all radios tested in his previous videos.

Night time reception SDR ranking
Night time reception SDR ranking
Daytime reception SDR ranking
Daytime reception SDR ranking
Final Ranking
Final Ranking
https://www.youtube.com/watch?v=AyXyP9LO8n4

Portable Shortwave Spectrum Capture with an Airspy + Spyverter and Tablet

Over on his blog London Shortwave writes how difficult it can be trying to listen to shortwave radio stations when you’re indoors and in a big city filled with RF noise. His solution is a portable lightweight shortwave travel kit that he can take to the park. The kit that he recommends using includes an Airspy SDR with SpyVerter upconverter, a Toshiba Encore 8″ Tablet and an OTG USB adapter. His antenna is a portable dipole made from two pieces of 6m copper wire connected to a balun, then connected to the SDR with 3m of coax. The whole kit easily fits into a small metal brief case.

For the software London Shortwave uses SDR# and he enjoys capturing large chunks of the HF spectrum for replay later using the base band recorder and file player plugins for SDR#. In his post he also shows how he runs the Airspy in debug mode to restrict it to 6 MHz which is the maximum bandwidth that his tablet’s CPU can handle.

His post shows various example videos of his setup receiving some nice shortwave signals.

London Shortwave's SDR Kit.
London Shortwave’s SDR Kit.

Leif (SM5BSZ) Compares Several HF Receivers

Over on YouTube well known SDR tester Leif (SM5BSZ) has uploaded a video that compares the performance of several HF receivers with two tone tests and real antennas. He compares a Perseus, Airspy + SpyVerter, BladeRF + B200, BladeRF with direct ADC input, Soft66RTL and finally a ham-it-up + RTLSDR. The Perseus is a $900 USD high end HF receiver, whilst the other receivers are more affordable multi purpose SDRs.

If you are interested in only the discussion and results then you can skip to the following points:

24:06 – Two tone test @ 20 kHz. These test for dynamic range. The ranking from best to worst is Perseus, Airspy + SpyVerter, Ham-it-up + RTLSDR, Soft66RTL, BladeRF ADC, BladeRF + B200. The Perseus is shown to be significantly better than all the other radios in terms of dynamic range. However Leif notes that dynamic range on HF is no longer as important as it once was in the past, as 1) the average noise floor is now about 10dB higher due to many modern electronic interferers, and 2) there has been a reduction in the number of very strong transmitters due to reduced interest in HF. Thus even though the Perseus is significantly better, the other receivers are still not useless as dynamic range requirements have reduced by about 20dB overall.

33:30 – Two tone test @ 200 kHz. Now the ranking is Perseus, Airspy + SpyVerter, Soft66RTL, BladeRF+B200, Ham-it-up + RTLSDR, BladeRF ADC.

38:30 – Two tone test @ 1 MHz. The ranking is Perseus, Airspy + SpyVerter, BladeRF + B200, ham-it-up + RTLSDR, Soft66RTL, bladeRF ADC. 

50:40 – Real antenna night time SNR test @ 14 MHz. Since the Perseus is know to be the best, here Leif uses it as the reference and compares it against the other receivers. The ranking from best to worst is Airspy + SpyVerter, ham-it-up + RTLSDR, BladeRF B200, Soft66RTL, BladeRF ADC. The top three units have similar performance. Leif notes that the upconverter in the Soft66RTL seems to saturate easily in the presence of strong signals.

1:13:30 – Real antenna SNR ranking for Day and Night tests @ 14 MHz. Again with the Perseus as the reference. Ranking is the same as in 3).

https://www.youtube.com/watch?v=2BO419G5Lys

In a previous video Leif also uploaded a quick video showing why he has excluded the DX patrol receiver from his comparisons. He writes that the DX patrol suffers from high levels of USB noise.

https://www.youtube.com/watch?v=khhyd8-wWEE

Using the RTL-SDR as a Panadapter for the IC-751A

A panadapter is a device that connects to a standard hardware radio and allows you to visually see the RF signals on a waterfall. Since SDR’s run on the PC, they naturally have the ability to display a panadapter screen, and most software like SDR#, HDSDR and SDR-Console already provide this. The RTL-SDR can also be used to add panadapter capabilities to a regular hardware radio. 

Gary Rondeau has been using the RTL-SDR as a panadapter for his IC-751A, which is a high quality ham radio transceiver. In his first post, Gary shows how he connected the RTL-SDR in a block diagram, and then shows how he interfaces the RTL-SDR and IC-751A together using HDSDR and the Omnirig software.

Block diagram showing the RTL-SDR as a Panadapter with the IC-751A and HDSDR.
Block diagram showing the RTL-SDR as a Panadapter with the IC-751A and HDSDR.

In his second post he shows a comparison between decoding JT65 and JT9 signals directly from the IC-751A audio output, vs via the RTL-SDR & HDSDR panadapter connection. His results show that as long as there is sufficient signal level, the RTL-SDR as a panadapter can match the performance of the raw IC-751A audio output, even producing less signal splatter on strong signals due to the pure numerical vs analogue mixing strategies of SDRs vs analogue radios.

RTL-SDR (top) vs raw audio from IC-751A below. RTL-SDR has a wider bandwidth, and less splatter at 2200 kHz when the strong signal came in.
RTL-SDR (top) vs raw audio from IC-751A below. RTL-SDR has a wider bandwidth, and less splatter at 2200 kHz when the strong signal came in.

Finally, in his third post he shows some more benefits of using the RTL-SDR as a panadapter, including rapid SSB tuning, RFI identification and signatures, helping work a pile up, monitor SSB net while working PSK on the parent radio, monitor the JT65 & JT9 band while working PSK – or vise versa and finally leave the radios on and monitor PSK, RTTY, JT65 & JT9 traffic for PSK Reporter.

Airspy vs SDRPlay: Two New Comparison Videos

Over on YouTube two new videos comparing the reception on the SDRplay and Airspy have been uploaded. The first is by Mile Kokotov and he compares the reception on a very weak broadcast FM station, with several strong signals surrounding it. He writes:

In this video I am presenting Airspy+SDR# vs SDRplay+SDRuno in the real world, receiving very weak FM broadcast station in the terrible conditions, with very strong signals around.
The Weak signal was in the lower edge of the FM broadcast spectrum, with very strong local signals close to the weak one, in the upper frequencies of the FM broadcast spectrum.
The antenna for the both SDR receivers was the same – Vertical Dipole for FM BC band.

Both SDR receivers were tuned to maximum possible signal to noise ratio (SNR) of the weak FM broadcast signal.

In SDRuno RSP control panel (for SDRplay receiver) ZERO IF and 0.3/0.6 bandwidth were chosen, and the weak signal of interest was placed on the right edge of IF filter, so that the strong signals from other FM broadcast radio stations were placed right from the weak one in order to minimized the negative influence to the our weak signal.
LNA was switched off. When the LNA was on, there where high distortion level because LNA was overloaded from the strong signals, and SNR was deteriorated regardless of gain reduction.
The best results were achieved with gain reduction set to “0”, without LNA.

In SDR# software (for Airspy SDR receiver) 10 MSPS and Decimation was used.
From the version 1480, in SDR#, when decimation is choosed, there is tracking filter which allow better selectivity, so you can use more gain, increasing the SNR to maximum possible level depending of concrete situation.

The overall receiving conditions was extremely bad. The signals from local FM radio stations were too strong so the weak signal from this video can not be received at all, with many expensive FM tuners which I tried: Pioneer VSX 527, Denon AVR-1802, Marantz SR6300. I was tried RTL-SDR just for fun, but it can not receive weak signal too :-), not because SDR-RTL is not sensitive enough, but because its dynamic range is not so high and it is overloaded by too strong local signals.

The very sensitive receiver is not problem to design and produce. Much more difficult is to design a high dynamic range receiver. which will be able to receive very weak and very strong signals at the same time without overloading.

Overloaded receiver front end means that it is not linear any more, and produces many signals by itself, increasing its noise level.
Very strong signals at the receiver front end makes Desensitization of the receiver, so it could not receive weak signals any more.
We should not forget that the receiver front end “looks” all signals from the wide frequency range even if we want to receive only one signal at the time. The more wideband the receiver is, the higher dynamic range it has to be, for not been overloaded…

https://www.youtube.com/watch?v=RqM6KtbEyYI

In the second video Leif sm5bsz compares the Airspy+SpyVerter with the SDRplay RSP on HF reception. He concludes that the difference between the two radios on HF is small. However, Youssef from Airspy has contested the result, noticing that Leif ran the Airspy at 2.5 MSPS, resulting is significantly less decimation being used. In response Leif updated his video adding an A/B comparison on HF with the Airspy correctly running at 10 MSPS in the last 8 minutes of the video. The results seem to show that the SDRPlay and Airspy+Spyverter have similar HF performance, but when comparing maximum decimation on the Airspy and the smallest bandwidth the SDRplay to obtain similar bandwidth’s, the results seem to show that the Airspy+SpyVerter is about 5 dB more sensitive at receiving weak signals.

https://www.youtube.com/watch?v=VTYdIVzTrYQ