Category: News

New Product in Our Store: SDRplay RSP-1 Aluminum Case Upgrade

We’re happy to announce that in conjunction with Mike, one of the leaders in the SDRplay users community, we have manufactured and released a high quality aluminum enclosure upgrade for the SDRplay RSP-1 software defined radio. The SDRplay RSP-1 is a $129 USD 12 bit SDR that can tune between 10 kHz – 2 GHz. It comes by default in a simple plastic enclosure. Upgrading to a metal case enclosure not only looks sleeker, but also shields the RSP-1 from strong RF interference directly entering the PCB.

The enclosure also comes with a bonus RTL-SDR Blog broadcast FM (BCFM) filter to help reduce overloading and images from extremely strong broadcast FM stations. This filter can be installed either inside or outside the metal enclosure.

Also included is a semi-hardshell travel case which is perfect for protecting the RSP-1 while on the move. Finally, some accessories such as a thermal pad for mounting, grounding lug with nuts, 3M rubber feet and of course the enclosure screws are also included.

The cost of the enclosure including all extras is $39.95 USD with worldwide shipping included. The case is available from our Chinese warehouse for customers anywhere in the world, and in a few days it will also be able on Amazon USA for faster local US shipments. Shipping on Amazon should also be free as the free shipping threshold on Amazon was recently reduced back down to $35 USD.

Visit our store to purchase

See some images below for an overview of what you get in the package:

 

New Product in Our Store: SDRplay RSP-1 Aluminum Case Upgrade

We’re happy to announce that in conjunction with Mike, one of the leaders in the SDRplay users community, we have manufactured and released a high quality aluminum enclosure upgrade for the SDRplay RSP-1 software defined radio. The SDRplay RSP-1 is a $129 USD 12 bit SDR that can tune between 10 kHz – 2 GHz. It comes by default in a simple plastic enclosure. Upgrading to a metal case enclosure not only looks sleeker, but also shields the RSP-1 from strong RF interference directly entering the PCB.

The enclosure also comes with a bonus RTL-SDR Blog broadcast FM (BCFM) filter to help reduce overloading and images from extremely strong broadcast FM stations. This filter can be installed either inside or outside the metal enclosure.

Also included is a semi-hardshell travel case which is perfect for protecting the RSP-1 while on the move. Finally, some accessories such as a thermal pad for mounting, grounding lug with nuts, 3M rubber feet and of course the enclosure screws are also included.

The cost of the enclosure including all extras is $39.95 USD with worldwide shipping included. The case is available from our Chinese warehouse for customers anywhere in the world, and in a few days it will also be able on Amazon USA for faster local US shipments. Shipping on Amazon should also be free as the free shipping threshold on Amazon was recently reduced back down to $35 USD.

Visit our store to purchase

See some images below for an overview of what you get in the package:

 

ADALM-PLUTO: A New $149 TX Capable SDR with 325 – 3800 MHz Range, 12-Bit ADC and 20 MHz Bandwidth

Recently we’ve heard about the ADALM-PLUTO (a.k.a PlutoSDR) which is an up and coming RX/TX capable SDR that covers 325 – 3800 MHz, has a 12-bit ADC and a 61.44 MSPS sampling rate. All this and it is currently priced at only $149 USD on Digikey (but note that it is not shipping yet). This makes it the lowest price general purpose TX capable SDR that we’ve seen so far.

Regarding the features and specs they write:

ADI’s ADALM-PLUTO is the ideal learning tool/module for radio frequency (RF), software defined radio (SDR), and wireless communications. Each ADALM-PLUTO comes with two antennas, one for frequencies of 824 HMz to 894 HMz and the other for 1710 MHz to 2.170 GHz. Each unit comes with one 15 cm SMA cable with both transmitter and receiver capabilities and is powered via USB. The self-contained RF learning module supports both half and full duplex communications and uses MATBAB and GNU Radio sink source blocks, Libiio, A C, C++, C#, and Python API.

The internal components of ADALM-PLUTO include, AD936x RF Agile Transceiver™ and Power, Micron DDR3L and QSPI Flash, Xilinx® Zqynq® programmable SoC and USB 2.0 PHY. The firmware PlutoSDR is open source and comprises technology from Das U-Boat, the Linux Kernal and Buildroot. The ADALM-PLUTO is the ideal wireless, SDR learning tool for students, hobbyists, and educators.

Features

  • Portable self-contained RF learning module
  • Cost-effective experimentation platform
  • RF coverage from 325 MHz to 3.8 GHz
  • Flexible rate, 12-bit ADC and DAC
  • One transmitter and one receiver (female SMA, 50 Ω)
  • Half or full duplex
  • MATLAB, Simulink support
  • GNU radio sink and source blocks
  • Libiio, a C, C++, C#, and Python API
  • USB 2.0 interface
  • Plastic enclosure
  • USB powered
  • Up to 20 MHz of instantaneous bandwidth (complex I/Q)

The PlutoSDR appears to be mainly advertised as a learning module for electrical engineering students (see the promotional PDF pamphlet here), but it there seems to be no reason why it could not be used as a general purpose SDR. In fact it seems that @csete the author of GQRX has already made his PlutoSDR work in GQRX

The PlutoSDR is also more than just an SDR. On board is a full SoC (‘System on Chip’) which includes an FPGA and ARM processor that allows Linux to run directly on the device. The processor and Linux can access the SDR and run applications on the device itself. Over on the PlutoSDR wiki there are already a few tutorials that show how to use the SDR with MATLAB, Simulink and GNU Radio.

From the specs of this SDR the main limitation seems to be the tuning range with the lowest frequency tunable being only 325 MHz. But a simple upconverter could easily solve this limitation. As it is designed to be a learning tool for University students we also expect that there will be a lot of documentation and applications eventually built for it.

At the moment the PlutoSDR does not appear to be for sale. It only seems that several early model units have been sent out to developers. But it looks like the PlutoSDR will be available on Digikey for $149 USD. We’re not sure if this is the exact pricing, as a few days earlier a lower price was shown, but even at $149 USD it seems to be a good deal.

The PlutoSDR
The PlutoSDR

Scanning the Spectrum at 8GHz per Second with the new HackRF Update

Recently Mike Ossmann, creator of the HackRF released version 2017.02.1 of the libhackrf, hackrf-tools and firmware on the HackRF Git. The update was developed together with the help of Dominic Spill. The full release text is pasted below:

To upgrade to this release, you must update libhackrf and hackrf-tools on your host computer. You must also update firmware on your HackRF. It is important to update both the host code and firmware for this release to work properly. If you only update one or the other, you may experience unpredictable behavior.

Major changes in this release include:

Sweep mode: A new firmware function enables wideband spectrum monitoring by rapidly retuning the radio without requiring individual tuning requests from the host computer. The new hackrf_sweep utility demonstrates this function, allowing you to collect spectrum measurements at a sweep rate of 8 GHz per second. Thanks to Mike Walters, author of inspectrum, for getting this feature working!

Hardware synchronization: It is now possible to wire the expansion headers of two or more HackRF Ones together so that they start sampling at the same time. This is advantageous during phase coherent operation with clock synchronized HackRFs. See the -H option of hackrf_transfer. Thank you, Mike Davis!

A new utility, hackrf_debug, replaces three older debug utilities, hackrf_si5351c, hackrf_max2837, and hackrf_rffc5071.

Power consumption has been reduced by turning off some microcontroller features we weren’t using.

There have been many more enhancements and bug fixes. For a full list of changes, see the git log.

Special thanks to Dominic Spill who has taken over much of the software development effort and has helped with nearly every improvement since the previous release!

One of the most interesting updates is the upgrade to hackrf_sweep. The new firmware allows you to make huge wideband scans of the entire 0 – 6 GHz range of the HackRF in under one second (8 GHz/s). In comparison the Airspy is currently capable of scanning at about 1 GHz/s (although the Airspy author has mentioned that a sweep mode could also easily be added on the Airspy).

To update the drivers and flash the new firmware in Linux:

  1. Download the new release tar at https://github.com/mossmann/hackrf/releases/tag/v2017.02.1
     
  2. Extract the tar.xz file into a folder.
     
  3. Build and install the host tools using the instructions
    at https://github.com/mossmann/hackrf/tree/master/host
     
  4. Flash the new firmware with hackrf_spiflash -w firmware-bin/hackrf_one_usb.bin (or the bin file for the Jawbreaker if you have that version of the HackRF)
     
  5. Disconnect then reconnect the HackRF.

To install Mike Ossmanns fork of QSpectrumAnalyzer which supports the new hackrf_sweep:

  1. sudo apt-get install python3-pip python3-pyqt4 python3-numpy
     
  2. git clone https://github.com/mossmann/qspectrumanalyzer
     
  3. sudo pip3 install ./qspectrumanalyzer
     
  4. This gets installed to ~/.local/bin

To generate a wideband waterfall image sweep with hackrf_sweep and Kyle Keen’s heatmap.py software:

  1. git clone https://github.com/keenerd/rtl-sdr-misc. Take note of heatmap.py inside rtl-sdr-misc/heatmap.
     
  2. Scan from 1 MHz – 3 GHz, with a bin size of 100k, LNA gain of 32 and VGA gain of 8: ./hackrf_sweep -f1:3000 -w100000 -l32 -g8 > output_data.csv
     
  3. Generate the heatmap (can take some time to complete if you have a large data file from a long scan): python heatmap.py output_data.csv heatmap_image.png

We’ve uploaded an 0-6 GHz example waterfall scan image over about 30 minutes which is available at filedropper.com/op4. The png file is 90 MB. A sample of the sweep from 400 – 600 MHz is shown below. Trunking, various telemetry and DVB-T signals are visible.

hackrf_sweep 400 - 620 MHz sample
hackrf_sweep 400 – 620 MHz sample

Some GIF examples of QSpectrumAnalyzer running the new hackrf_sweep in order from 1) 0 – 6 GHz scan, 2) 0 – 3 GHz scan, 3) 0 – 1 GHz scan, 4) 500 – 640 MHz scan, 5) 2.4 GHz WiFi Band are shown below.

Continue reading

RTL-SDR.com Broadcast AM Block High Pass Filter Now for Sale

Back in October we released a broadcast FM bandstop filter for removing strong signals in the 88 – 108 MHz region. Today we’re releasing a new broadcast AM high pass filter (BCAM HPF) with a 2.6 MHz cutoff. The cost is the same as the BCFM bandstop filter at $14.95 USD including free international air shipping. Faster shipping options may also be chosen if desired. We’ll eventually have this product on Amazon USA in a few months too, but for now it is only available from our Chinese warehouse.

The filter comes in a 2.8 cm x 2.8 cm x 1.3 cm aluminum enclosure and uses female SMA connectors on each end. Included in the package is also a SMA male to SMA male straight barrel adapter.

Click here to visit our store

The Broadcast AM High Pass Filter
The Broadcast AM High Pass Filter

This filter is designed to eliminate broadcast band AM (BCAM) stations by attenuating (blocking) any signals below 1.7 MHz. In reality due to roll-off the filter is usable from about 2.5 – 2.6 MHz and above.

The broadcast AM band exists at around 525 kHz to 1.705 MHz. These signals are usually local, and if you live close to a transmitter they can sometimes be extremely strong. Broadcast AM signals that are too strong can overload your SDR or radio, causing poor reception in other HF bands too. The filter also helps attenuate any other strong VLF/LF/MW interference. Note that this filter is a high pass and not a bandstop, so it will also block VLF signals. Specifications are shown below:

Filter Type: LC High Pass Filter
3 dB Cutoff: 2.5 – 2.6 MHz
Attenuation: ~60dB
Pass band I.L: Typically well below 2 dB
Power Levels: RX power only, cannot pass DC

http://Insertion%20Losses

Insertion Losses

http://Insertion%20Losses

Insertion Losses

http://Return%20Loss

Return Loss

http://V3%20Direct%20Sampling%20no%20Filter

V3 Direct Sampling no Filter

http://V3%20Direct%20Sampling%20with%20BCAM%20HPF

V3 Direct Sampling with BCAM HPF

We’ve also uploaded a video below that shows a demonstration of reception when using an RTL-SDR.com V3 dongle in direct sampling mode together with the BCAM HPF. In the video we first compare reception against an upconverter (the Spyverter). It’s worth nothing that the upconverter can receive signals well even without the filter in place. Using the filter does still help the upconverter receive a little bit better but the effect is not shown in the video. Then we simply scroll through the spectrum and listen to a few signals.

https://www.youtube.com/watch?v=vuSCFus_ono

HDSDR Updated to Version 2.76

The popular HDSDR software has recently been updated to version 2.76. After a three year hiatus the HDSDR developers are back in action starting with the 2.75 update which was released in early January. The 2.76 stable version released February 02, 2017 is a minor update with several bugfixes and a few new features. The 2.76 changelog is posted below:

Version 2.76 (February 02, 2017)

– switchable display mode: S-units / dBm
– switchable mode for S-meter: RMS / Peak
– enhanced accuracy of level indicators. New calibration required!
– periodic and explicit level logging into .CSV file
– switching AGC to off, sets manual gain value
– oversteering/clipping audio does now reduce gain value – not volume
– fixed OmniRig handling: “MuteOnTX”
– deactivate AFC after frequency/mode changes for a small duration
– Fast WAV file demodulation & recording
– some new keyboard shortcuts
– some other small improvements and fixes

Of interested are the new keyboard shortcuts which should improve efficiency with the program.

The 2.76 HDSDR Control Panel
The 2.76 HDSDR Control Panel

LimeSDR First Batch Shipping Now

The LimeSDR is a RX/TX capable SDR with a 100 kHz – 3.8 GHz frequency range, 12-bit ADC and 61.44 MHz bandwidth. Back in June 2016 they surpassed their $500k goal, raising over $800k on the crowdfunding site Crowdsupply. 

We predict that the LimeSDR will essentially be seen as an improved HackRF SDR, perfect for experimenting with and reverse engineering RF devices without the 8-bit ADC, poor sensitivity and half-duplex limitations of the HackRF. They also seem to be active in promoting software for the device, writing that they will eventually have an app store like marketplace for various LimeSDR apps.

Recently the LimeSDR has completed manufacturing of its first batch, and is now ready to ship to backers. A single LimeSDR right now costs $289 USD to preorder, and early bird supporters were able to snag one for $199 USD. They write:

Shipping Will Start in 24 Hours
The first batch of LimeSDRs and accessories has arrived safely at the Crowd Supply warehouse.

Address Changes Must Be Processed Now

Shipping of the first batch of orders will commence within the next 24 hours. If you need to change your address, you should do it now by logging into your Crowd Supply account and viewing your order.

When Will My Order Ship?

The only way to know to know with certainty if your order is shipping within the next few days is if you receive a shipping confirmation email from Crowd Supply. The logistics of shipping hundreds of varied orders around the world is complex enough that it’s not possible to tell you your exact place in line. For example, Crowd Supply will likely send several test shipments to different countries to gauge how well they get through customs and the timing of future shipments to those countries may be affected by the results.

When Will My Order Arrive?

Once your order has shipped, you will receive a shipping confirmation email with a tracking number. For orders destined for outside the US, it is not uncommon for the tracking information to cease being updated after it leaves the US, though for some countries (e.g., UK, Germany, Australia) the packages can continue to be tracked using your national postal website and the same tracking number. If there is a delay in delivering your package, you should check with your local customs office to make sure they are not holding it and waiting for you to pick it up.

We look forward to beginning to use our own LimeSDR and will post reviews when it arrives.

Some of the LimeSDR's ready for shipping.
Some of the LimeSDR’s ready for shipping.

An Update on the PatronX Titus II

Back in September 2016 we posted about the PatronX Titus II portable software defined radio which appears to currently be on its way to beginning production. It is a portable Android tablet based SDR, which we speculate is using similar chips to the SDRplay RSP with its 100 kHz to 2 GHz tuning range. The price goal is set to be under $100 USD.

Currently it is available for ‘pre-order’ on the HFCC website, although what they call a pre-order is actually just an expression of interest, and no payment is required.

Today over on the SWLing post blog we’ve seen an update. They write:

As you can imagine the response to Titus has almost been overwhelming! Pre-orders far exceeded our imagination and excitement from broadcasters has been very loud. DRM and digital broadcasting seems to be reinvigorated with Titus in 2017. I think we really broke the price barrier that most everyone has been dreaming of and provided the flexibility that has held back the cause.

As posted on http://hfcc.org/delivery/receivers.phtml

‘Update on availability received from PantronX: “We have been overwhelmed with the response to Titus with orders and request – coupled with an early Chinese New Year that the pre-production date has slipped a bit. Please be patient as we work with our suppliers and add more functions.” ‘

We are doing all we can to push – Chinese New Year is a crazy time – the factories are shut down for 3 to 4 weeks and as you can imagine the stress prior to and the performance after.

Hopefully in the next couple of weeks our http://titusradio.com/ website will undergo a much needed update. So much to do – but we are making good headway.

The Titus II Portable SDR
The Titus II Portable SDR

SDR-Console V3 Preview Updated to Support the SDRplay RSP2

Recently Jon from the SDRplay team wrote in to let us know that SDR-Console V3 (preview version) has just been updated and it now supports the RSP2. The RSP2 is the successor to the popular RSP1 software defined radio. It has improved filtering, more input ports, improved LNA, and just overall improved performance. See our initial RSP2 review here. They write:

Many thanks to Simon Brown for updating SDR-Console V3 Preview to fully support both the RSP1 and the RSP2- you can download the software from http://sdr-radio.com/v3_preview_downloads (be sure to click on the software link under where it says ‘Downloads’ unless you want to download the software from the advertisers who support Simon’s work!)

As new YouTube demo videos of SDR-Console V3 in action become available, we will add them to the playlists on our YouTube Channel: www.youtube.com/c/SDRplayRSP

The RSP2 now supports its native SDRUno software, HDSDR through an extIO module, CubicSDR and now SDR-Console V3.

The RSP2
The RSP2