Category: News

The FreeSRP SDR is now Seeking Crowd Funding on CrowdSupply

Back in August of 2016 we posted about Lukas Lao Beyer’s work in creating a software defined radio from scratch. His goal was to design something that fit somewhere in between the $300 HackRF and the higher end and more pricey USRP radios. Back then he had completed the design and had a working prototype.

Now the Lukas has put the FreeSRP up on CrowdSupply, a crowd funding website. The FreeSRP is priced at $420 each and the goal is to raise $75,000 in order to begin a manufacturing run of the SDR.  At the time of writing this post, the campaign has been running for a day at is already 8% funded.

The FreeSRP has a tuning range from 70 MHz to 6 GHz, uses a 12-bit ADC with a sampling rate of up to 61.44 MSPS, and has a maximum analog filter bandwidth of 56 MHz. It is a full-duplex radio (can transmit & receive at the same time). The main chip in the unit is the fairly expensive (~$150 USD) AD9364 integrated RF transceiver chip and it also comes with a Xilinx Artix 7 FPGA. Furthermore the hardware and code is entirely open source.

The specs seem somewhat similar to the cheaper LimeSDR, although the main chipset is different as the FreeSRP uses the AD9364 chip and the LimeSDR uses their own LimeMicro LMS7002M chip. The AD9364 is the same chip used in the USRP B200 units. Below is an in-class comparison given on the FreeSRP CrowdSupply page.

FreeSRP Comparisons and PCB Image
FreeSRP Comparisons and PCB Image

Below is the FreeSRP promotional video.

KiwiSDR Massdrop: $50 Saving on the Retail Price

The KiwiSDR is a wideband HF software defined radio that is designed to receive the entire 10 kHz – 30 MHz spectrum all at once. It works together with a BeagleBone single board computer and uploads it’s wideband radio data to the internet via the OpenWebRX SDR web interface and control software. Examples of KiwiSDRs shared publicly on the web with OpenWebRX can be found at sdr.hu.

Back in April of last year the KiwiSDR was successfully crowd funded on Kickstarter, and was later released for general ordering in October from SeeedStudio. Normally the KiwiSDR kit including KiwiSDR, BeagleBone, enclsoure, GPS antenna and SD card costs $299 USD.

Currently a Massdrop is underway for KiwiSDR (it seems that the link only works for logged in users). If you didn’t already know, a Massdrop is an organized group buy effort. Buy grouping several individual orders together and making a bulk order, the manufacturer is likely to give a discount. Currently the price for the KiwiSDR kit on the Massdrop is $249.99 USD ($50 saving on the regular price), with only 2 days remaining to join in. Once finished, the estimated shipping date is April 24, 2017.

The KiwiSDR
The KiwiSDR

ColibriNANO: A New 10 kHz to 500 MHz Direct Sampling Receiver

The ColibriNANO is a new software defined radio that is currently available for pre-order and is expected to be ready for delivery by the end of April 2017. The specs show that it is a direct sampling receiver (no tuner), which can receive from 10 kHz to 500 MHz in oversampling mode, and from 10 kHz to 55 MHz in standard mode. It uses a 14 Bit ADC which provides up to 110 dB’s of blocking dynamic range, and can run with a sampling rate of up to 3 MHz. The press release given to us reads:

New ColibriNANO SDR USB Receiver with a 14-bit ADC .01-500MHz

Kirkland, WA, USA —March 27 th , 2017 –

Vasily Vasiliev, Chief Hardware Engineer of Expert Electronics is pleased to announce availability of new ColibriNANO 0.01-500 MHz receiver in late April, 2017.

Notable features include the blocking dynamic range (BDR) ~110dB, native .01-55 MHz coverage with up to 500 MHz in oversampling mode, low pass filter (LPF) <60 MHz, full compatibility with HDSDR, legacy SDR#, and ExpertSDR2 software.

Supported platforms are Windows® XP-10, Linux and Web-client for HTML5 browsers.

No existing USB SDR receivers combine high sensitivity and broad dynamic range. Remote operation (TCP/IP) interface is built-in and offers plug-and- play solutions for Amateur, Commercial and Government applications.

For further information call (800)977-0448 or email [email protected]

https://www.nsiradio.com

Currently we see that the ColibriNANO is selling for $249.95 USD on the nsiradio.com website. We’ve also seen the following description on the sunsdr.eu website:

With the new ColibriNANO you will be able to enjoy LF, MW and Shortwave listening in many different ways. For example you can record the entire medium wave band using 1.5 MHz sampling rate, decode CW using CW skimmer, remote control the ColibriNANO by plugging it into our RPI server. There are an endless range of applications for this small SDR. All this in a tiny USB stick!

The ColibriNANO features a Texas Instruments ADS4145 14 bit direct sampling ADC and a built in low 55 MHz pass filter that can be bypassed to receive signals up to 500 MHz (external filters  like the our 2m filtered preamp recommended).

CW skimmer and Skimmer With the external ExtIO library the ColibriNANO can be used with third party software like HDSDR etc.

This is not a cheap USB dongle found on Ebay, this high quality SDR receiver is developed by Expert Electronics and features a sturdy aluminium chassis, ESD protection, USB 2.0 interface and a quality SMA antenna connector.

Best of all, the ColibriNANO travels in your pocket and only needs your computer and an antenna! Its the ultimate portable SDR receiver!

Software support

  • ExpertSDR2
  • CW Skimmer
  • Skimmer Server
  • Third party software using ExtIO library

Specifications

  • Receiving bandwidth: 0.1 – 55 MHz
  • Oversampling receiving: 0.1 – 500 MHz
  • Blocking Dynamic Range (BDR): 110 dB
  • Sensitivity: 0.05 uV at 20M band, preamp = 0
  • IMD3 Dynamic Range: 95 dB
  • ADC resolution: 14-bit @ 122.88 MHz
  • Sample rate: 48, 96, 192, 384, 768 kHz and 1.5, 3.0 MHz
  • IQ resolution: 24 bit (16 bit at 1.5 and 3 MHz sample rates)
  • RF Input: (SMA connector, up to 15kV ESD protection)
  • Preamp range: from 31.5 up to +6 dB with 0.5 dB steps
  • Operating temperature: -10°C to 60°C
  • Dimensions: 90х25х17mm
  • Weight: 0.043kg

It looks like that this receiver may compete somewhat with the also upcoming Airspy HF+. The Airspy HF+ claims similar specs including a frequency range of 0 – 270 MHz, 14 Bit ADC and 108 dB blocking dynamic range. But the target price for the HF+ is below $200 USD.

The FreeSRP SDR is now Seeking Crowd Funding on CrowdSupply

Back in August of 2016 we posted about Lukas Lao Beyer’s work in creating a software defined radio from scratch. His goal was to design something that fit somewhere in between the $300 HackRF and the higher end and more pricey USRP radios. Back then he had completed the design and had a working prototype.

Now the Lukas has put the FreeSRP up on CrowdSupply, a crowd funding website. The FreeSRP is priced at $420 each and the goal is to raise $75,000 in order to begin a manufacturing run of the SDR.  At the time of writing this post, the campaign has been running for a day at is already 8% funded.

The FreeSRP has a tuning range from 70 MHz to 6 GHz, uses a 12-bit ADC with a sampling rate of up to 61.44 MSPS, and has a maximum analog filter bandwidth of 56 MHz. It is a full-duplex radio (can transmit & receive at the same time). The main chip in the unit is the fairly expensive (~$150 USD) AD9364 integrated RF transceiver chip and it also comes with a Xilinx Artix 7 FPGA. Furthermore the hardware and code is entirely open source.

The specs seem somewhat similar to the cheaper LimeSDR, although the main chipset is different as the FreeSRP uses the AD9364 chip and the LimeSDR uses their own LimeMicro LMS7002M chip. The AD9364 is the same chip used in the USRP B200 units. Below is an in-class comparison given on the FreeSRP CrowdSupply page.

FreeSRP Comparisons and PCB Image
FreeSRP Comparisons and PCB Image

Below is the FreeSRP promotional video.

KiwiSDR Massdrop: $50 Saving on the Retail Price

The KiwiSDR is a wideband HF software defined radio that is designed to receive the entire 10 kHz – 30 MHz spectrum all at once. It works together with a BeagleBone single board computer and uploads it’s wideband radio data to the internet via the OpenWebRX SDR web interface and control software. Examples of KiwiSDRs shared publicly on the web with OpenWebRX can be found at sdr.hu.

Back in April of last year the KiwiSDR was successfully crowd funded on Kickstarter, and was later released for general ordering in October from SeeedStudio. Normally the KiwiSDR kit including KiwiSDR, BeagleBone, enclsoure, GPS antenna and SD card costs $299 USD.

Currently a Massdrop is underway for KiwiSDR (it seems that the link only works for logged in users). If you didn’t already know, a Massdrop is an organized group buy effort. Buy grouping several individual orders together and making a bulk order, the manufacturer is likely to give a discount. Currently the price for the KiwiSDR kit on the Massdrop is $249.99 USD ($50 saving on the regular price), with only 2 days remaining to join in. Once finished, the estimated shipping date is April 24, 2017.

The KiwiSDR
The KiwiSDR

ColibriNANO: A New 10 kHz to 500 MHz Direct Sampling Receiver

The ColibriNANO is a new software defined radio that is currently available for pre-order and is expected to be ready for delivery by the end of April 2017. The specs show that it is a direct sampling receiver (no tuner), which can receive from 10 kHz to 500 MHz in oversampling mode, and from 10 kHz to 55 MHz in standard mode. It uses a 14 Bit ADC which provides up to 110 dB’s of blocking dynamic range, and can run with a sampling rate of up to 3 MHz. The press release given to us reads:

New ColibriNANO SDR USB Receiver with a 14-bit ADC .01-500MHz

Kirkland, WA, USA —March 27 th , 2017 –

Vasily Vasiliev, Chief Hardware Engineer of Expert Electronics is pleased to announce availability of new ColibriNANO 0.01-500 MHz receiver in late April, 2017.

Notable features include the blocking dynamic range (BDR) ~110dB, native .01-55 MHz coverage with up to 500 MHz in oversampling mode, low pass filter (LPF) <60 MHz, full compatibility with HDSDR, legacy SDR#, and ExpertSDR2 software.

Supported platforms are Windows® XP-10, Linux and Web-client for HTML5 browsers.

No existing USB SDR receivers combine high sensitivity and broad dynamic range. Remote operation (TCP/IP) interface is built-in and offers plug-and- play solutions for Amateur, Commercial and Government applications.

For further information call (800)977-0448 or email [email protected]

https://www.nsiradio.com

Currently we see that the ColibriNANO is selling for $249.95 USD on the nsiradio.com website. We’ve also seen the following description on the sunsdr.eu website:

With the new ColibriNANO you will be able to enjoy LF, MW and Shortwave listening in many different ways. For example you can record the entire medium wave band using 1.5 MHz sampling rate, decode CW using CW skimmer, remote control the ColibriNANO by plugging it into our RPI server. There are an endless range of applications for this small SDR. All this in a tiny USB stick!

The ColibriNANO features a Texas Instruments ADS4145 14 bit direct sampling ADC and a built in low 55 MHz pass filter that can be bypassed to receive signals up to 500 MHz (external filters  like the our 2m filtered preamp recommended).

CW skimmer and Skimmer With the external ExtIO library the ColibriNANO can be used with third party software like HDSDR etc.

This is not a cheap USB dongle found on Ebay, this high quality SDR receiver is developed by Expert Electronics and features a sturdy aluminium chassis, ESD protection, USB 2.0 interface and a quality SMA antenna connector.

Best of all, the ColibriNANO travels in your pocket and only needs your computer and an antenna! Its the ultimate portable SDR receiver!

Software support

  • ExpertSDR2
  • CW Skimmer
  • Skimmer Server
  • Third party software using ExtIO library

Specifications

  • Receiving bandwidth: 0.1 – 55 MHz
  • Oversampling receiving: 0.1 – 500 MHz
  • Blocking Dynamic Range (BDR): 110 dB
  • Sensitivity: 0.05 uV at 20M band, preamp = 0
  • IMD3 Dynamic Range: 95 dB
  • ADC resolution: 14-bit @ 122.88 MHz
  • Sample rate: 48, 96, 192, 384, 768 kHz and 1.5, 3.0 MHz
  • IQ resolution: 24 bit (16 bit at 1.5 and 3 MHz sample rates)
  • RF Input: (SMA connector, up to 15kV ESD protection)
  • Preamp range: from 31.5 up to +6 dB with 0.5 dB steps
  • Operating temperature: -10°C to 60°C
  • Dimensions: 90х25х17mm
  • Weight: 0.043kg

It looks like that this receiver may compete somewhat with the also upcoming Airspy HF+. The Airspy HF+ claims similar specs including a frequency range of 0 – 270 MHz, 14 Bit ADC and 108 dB blocking dynamic range. But the target price for the HF+ is below $200 USD.

New Product in Our Store: SDRplay RSP-1 Aluminum Case Upgrade

We’re happy to announce that in conjunction with Mike, one of the leaders in the SDRplay users community, we have manufactured and released a high quality aluminum enclosure upgrade for the SDRplay RSP-1 software defined radio. The SDRplay RSP-1 is a $129 USD 12 bit SDR that can tune between 10 kHz – 2 GHz. It comes by default in a simple plastic enclosure. Upgrading to a metal case enclosure not only looks sleeker, but also shields the RSP-1 from strong RF interference directly entering the PCB.

The enclosure also comes with a bonus RTL-SDR Blog broadcast FM (BCFM) filter to help reduce overloading and images from extremely strong broadcast FM stations. This filter can be installed either inside or outside the metal enclosure.

Also included is a semi-hardshell travel case which is perfect for protecting the RSP-1 while on the move. Finally, some accessories such as a thermal pad for mounting, grounding lug with nuts, 3M rubber feet and of course the enclosure screws are also included.

The cost of the enclosure including all extras is $39.95 USD with worldwide shipping included. The case is available from our Chinese warehouse for customers anywhere in the world, and in a few days it will also be able on Amazon USA for faster local US shipments. Shipping on Amazon should also be free as the free shipping threshold on Amazon was recently reduced back down to $35 USD.

Visit our store to purchase

See some images below for an overview of what you get in the package:

 

ADALM-PLUTO: A New $149 TX Capable SDR with 325 – 3800 MHz Range, 12-Bit ADC and 20 MHz Bandwidth

Recently we’ve heard about the ADALM-PLUTO (a.k.a PlutoSDR) which is an up and coming RX/TX capable SDR that covers 325 – 3800 MHz, has a 12-bit ADC and a 61.44 MSPS sampling rate. All this and it is currently priced at only $149 USD on Digikey (but note that it is not shipping yet). This makes it the lowest price general purpose TX capable SDR that we’ve seen so far.

Regarding the features and specs they write:

ADI’s ADALM-PLUTO is the ideal learning tool/module for radio frequency (RF), software defined radio (SDR), and wireless communications. Each ADALM-PLUTO comes with two antennas, one for frequencies of 824 HMz to 894 HMz and the other for 1710 MHz to 2.170 GHz. Each unit comes with one 15 cm SMA cable with both transmitter and receiver capabilities and is powered via USB. The self-contained RF learning module supports both half and full duplex communications and uses MATBAB and GNU Radio sink source blocks, Libiio, A C, C++, C#, and Python API.

The internal components of ADALM-PLUTO include, AD936x RF Agile Transceiver™ and Power, Micron DDR3L and QSPI Flash, Xilinx® Zqynq® programmable SoC and USB 2.0 PHY. The firmware PlutoSDR is open source and comprises technology from Das U-Boat, the Linux Kernal and Buildroot. The ADALM-PLUTO is the ideal wireless, SDR learning tool for students, hobbyists, and educators.

Features

  • Portable self-contained RF learning module
  • Cost-effective experimentation platform
  • RF coverage from 325 MHz to 3.8 GHz
  • Flexible rate, 12-bit ADC and DAC
  • One transmitter and one receiver (female SMA, 50 Ω)
  • Half or full duplex
  • MATLAB, Simulink support
  • GNU radio sink and source blocks
  • Libiio, a C, C++, C#, and Python API
  • USB 2.0 interface
  • Plastic enclosure
  • USB powered
  • Up to 20 MHz of instantaneous bandwidth (complex I/Q)

The PlutoSDR appears to be mainly advertised as a learning module for electrical engineering students (see the promotional PDF pamphlet here), but it there seems to be no reason why it could not be used as a general purpose SDR. In fact it seems that @csete the author of GQRX has already made his PlutoSDR work in GQRX

The PlutoSDR is also more than just an SDR. On board is a full SoC (‘System on Chip’) which includes an FPGA and ARM processor that allows Linux to run directly on the device. The processor and Linux can access the SDR and run applications on the device itself. Over on the PlutoSDR wiki there are already a few tutorials that show how to use the SDR with MATLAB, Simulink and GNU Radio.

From the specs of this SDR the main limitation seems to be the tuning range with the lowest frequency tunable being only 325 MHz. But a simple upconverter could easily solve this limitation. As it is designed to be a learning tool for University students we also expect that there will be a lot of documentation and applications eventually built for it.

At the moment the PlutoSDR does not appear to be for sale. It only seems that several early model units have been sent out to developers. But it looks like the PlutoSDR will be available on Digikey for $149 USD. We’re not sure if this is the exact pricing, as a few days earlier a lower price was shown, but even at $149 USD it seems to be a good deal.

The PlutoSDR
The PlutoSDR

Scanning the Spectrum at 8GHz per Second with the new HackRF Update

Recently Mike Ossmann, creator of the HackRF released version 2017.02.1 of the libhackrf, hackrf-tools and firmware on the HackRF Git. The update was developed together with the help of Dominic Spill. The full release text is pasted below:

To upgrade to this release, you must update libhackrf and hackrf-tools on your host computer. You must also update firmware on your HackRF. It is important to update both the host code and firmware for this release to work properly. If you only update one or the other, you may experience unpredictable behavior.

Major changes in this release include:

Sweep mode: A new firmware function enables wideband spectrum monitoring by rapidly retuning the radio without requiring individual tuning requests from the host computer. The new hackrf_sweep utility demonstrates this function, allowing you to collect spectrum measurements at a sweep rate of 8 GHz per second. Thanks to Mike Walters, author of inspectrum, for getting this feature working!

Hardware synchronization: It is now possible to wire the expansion headers of two or more HackRF Ones together so that they start sampling at the same time. This is advantageous during phase coherent operation with clock synchronized HackRFs. See the -H option of hackrf_transfer. Thank you, Mike Davis!

A new utility, hackrf_debug, replaces three older debug utilities, hackrf_si5351c, hackrf_max2837, and hackrf_rffc5071.

Power consumption has been reduced by turning off some microcontroller features we weren’t using.

There have been many more enhancements and bug fixes. For a full list of changes, see the git log.

Special thanks to Dominic Spill who has taken over much of the software development effort and has helped with nearly every improvement since the previous release!

One of the most interesting updates is the upgrade to hackrf_sweep. The new firmware allows you to make huge wideband scans of the entire 0 – 6 GHz range of the HackRF in under one second (8 GHz/s). In comparison the Airspy is currently capable of scanning at about 1 GHz/s (although the Airspy author has mentioned that a sweep mode could also easily be added on the Airspy).

To update the drivers and flash the new firmware in Linux:

  1. Download the new release tar at https://github.com/mossmann/hackrf/releases/tag/v2017.02.1
     
  2. Extract the tar.xz file into a folder.
     
  3. Build and install the host tools using the instructions
    at https://github.com/mossmann/hackrf/tree/master/host
     
  4. Flash the new firmware with hackrf_spiflash -w firmware-bin/hackrf_one_usb.bin (or the bin file for the Jawbreaker if you have that version of the HackRF)
     
  5. Disconnect then reconnect the HackRF.

To install Mike Ossmanns fork of QSpectrumAnalyzer which supports the new hackrf_sweep:

  1. sudo apt-get install python3-pip python3-pyqt4 python3-numpy
     
  2. git clone https://github.com/mossmann/qspectrumanalyzer
     
  3. sudo pip3 install ./qspectrumanalyzer
     
  4. This gets installed to ~/.local/bin

To generate a wideband waterfall image sweep with hackrf_sweep and Kyle Keen’s heatmap.py software:

  1. git clone https://github.com/keenerd/rtl-sdr-misc. Take note of heatmap.py inside rtl-sdr-misc/heatmap.
     
  2. Scan from 1 MHz – 3 GHz, with a bin size of 100k, LNA gain of 32 and VGA gain of 8: ./hackrf_sweep -f1:3000 -w100000 -l32 -g8 > output_data.csv
     
  3. Generate the heatmap (can take some time to complete if you have a large data file from a long scan): python heatmap.py output_data.csv heatmap_image.png

We’ve uploaded an 0-6 GHz example waterfall scan image over about 30 minutes which is available at filedropper.com/op4. The png file is 90 MB. A sample of the sweep from 400 – 600 MHz is shown below. Trunking, various telemetry and DVB-T signals are visible.

hackrf_sweep 400 - 620 MHz sample
hackrf_sweep 400 – 620 MHz sample

Some GIF examples of QSpectrumAnalyzer running the new hackrf_sweep in order from 1) 0 – 6 GHz scan, 2) 0 – 3 GHz scan, 3) 0 – 1 GHz scan, 4) 500 – 640 MHz scan, 5) 2.4 GHz WiFi Band are shown below.

Continue reading

RTL-SDR.com Broadcast AM Block High Pass Filter Now for Sale

Back in October we released a broadcast FM bandstop filter for removing strong signals in the 88 – 108 MHz region. Today we’re releasing a new broadcast AM high pass filter (BCAM HPF) with a 2.6 MHz cutoff. The cost is the same as the BCFM bandstop filter at $14.95 USD including free international air shipping. Faster shipping options may also be chosen if desired. We’ll eventually have this product on Amazon USA in a few months too, but for now it is only available from our Chinese warehouse.

The filter comes in a 2.8 cm x 2.8 cm x 1.3 cm aluminum enclosure and uses female SMA connectors on each end. Included in the package is also a SMA male to SMA male straight barrel adapter.

Click here to visit our store

The Broadcast AM High Pass Filter
The Broadcast AM High Pass Filter

This filter is designed to eliminate broadcast band AM (BCAM) stations by attenuating (blocking) any signals below 1.7 MHz. In reality due to roll-off the filter is usable from about 2.5 – 2.6 MHz and above.

The broadcast AM band exists at around 525 kHz to 1.705 MHz. These signals are usually local, and if you live close to a transmitter they can sometimes be extremely strong. Broadcast AM signals that are too strong can overload your SDR or radio, causing poor reception in other HF bands too. The filter also helps attenuate any other strong VLF/LF/MW interference. Note that this filter is a high pass and not a bandstop, so it will also block VLF signals. Specifications are shown below:

Filter Type: LC High Pass Filter
3 dB Cutoff: 2.5 – 2.6 MHz
Attenuation: ~60dB
Pass band I.L: Typically well below 2 dB
Power Levels: RX power only, cannot pass DC

http://Insertion%20Losses

Insertion Losses

http://Insertion%20Losses

Insertion Losses

http://Return%20Loss

Return Loss

http://V3%20Direct%20Sampling%20no%20Filter

V3 Direct Sampling no Filter

http://V3%20Direct%20Sampling%20with%20BCAM%20HPF

V3 Direct Sampling with BCAM HPF

We’ve also uploaded a video below that shows a demonstration of reception when using an RTL-SDR.com V3 dongle in direct sampling mode together with the BCAM HPF. In the video we first compare reception against an upconverter (the Spyverter). It’s worth nothing that the upconverter can receive signals well even without the filter in place. Using the filter does still help the upconverter receive a little bit better but the effect is not shown in the video. Then we simply scroll through the spectrum and listen to a few signals.

https://www.youtube.com/watch?v=vuSCFus_ono

HDSDR Updated to Version 2.76

The popular HDSDR software has recently been updated to version 2.76. After a three year hiatus the HDSDR developers are back in action starting with the 2.75 update which was released in early January. The 2.76 stable version released February 02, 2017 is a minor update with several bugfixes and a few new features. The 2.76 changelog is posted below:

Version 2.76 (February 02, 2017)

– switchable display mode: S-units / dBm
– switchable mode for S-meter: RMS / Peak
– enhanced accuracy of level indicators. New calibration required!
– periodic and explicit level logging into .CSV file
– switching AGC to off, sets manual gain value
– oversteering/clipping audio does now reduce gain value – not volume
– fixed OmniRig handling: “MuteOnTX”
– deactivate AFC after frequency/mode changes for a small duration
– Fast WAV file demodulation & recording
– some new keyboard shortcuts
– some other small improvements and fixes

Of interested are the new keyboard shortcuts which should improve efficiency with the program.

The 2.76 HDSDR Control Panel
The 2.76 HDSDR Control Panel