Category: News

SoDeRa: An upcoming low cost app-enabled open-source 100 kHz to 3.8 GHz SDR Transceiver

A new software defined radio called SoDeRa (SOftware DEfined RAdio) is currently under joint development by companies Canonical (the company behind the Ubuntu OS) and Lime Micro. SoDeRa is based on the new Lime Microsystems LMS7002M Transceiver chip which has a 100 kHz – 3.8 GHz range. The transceiver chip interfaces with an Altera Cyclone IV FPGA with 256 MB of RAM and a USB3 controller, and the whole radio will have 4x TX outputs and 6x RX inputs.

SoDeRa Block Diagram
SoDeRa Block Diagram

The people behind this SDR are currently marketing SoDeRa as “the Arduino of the Telecom and Radio Engineer”. It appears to be designed mainly to implement IoT and other radio communications protocols, but it also sounds like it could find excellent use in the hobby and amateur market as well as have benefits for the average person. Interestingly, the developers also plan to implement an app store which would allow you to essentially download a radio and instantly configure the SoDeRa SDR for any desired protocol or application. They write:

This is the first time that a revolutionary device for which we are organising a joint crowd-funding campaign with Lime Microsystems is made public. The #SoDeRa is the cheapest software defined radio you can buy. The #SoDeRa will have an app store and will be able to provide any type of (bi-directional) radio communication going from LTE, Lora, WiFi, GPS, Bluetooth, radar, radio-controlled toys/robots/drone, digital radio, digital TV to even MRI scanners, satellite and air traffic communications by just installing an app. The #SoDeRa is the Arduino of the Telecom and Radio Engineer.

The VP of IoT at Canonical also writes:

The SoDeRa is powerful enough to be a full MiMo LTE base station with long range coverage, provided you add the right antenna. You can via apps put other wireless communication protocols like LoRaWAN, Bluetooth, Zigbee, Z-Wave, GPS, Galileo, Airspace protocols, radar, MRI scanning RF, TV/Radio, any toy/robot/drone control, White Space, etc. But most importantly because of its price and ease of adding more protocols, the SoDeRa will enable anybody to define competing wireless communication protocols and put them into Github. Developers don’t like closed standards like LTE or complex standards like Bluetooth & Zigbee. The future will allow developers to compete against corporations and standardization bodies if they think current standards can be improved upon. The Internet has shown that this dynamic brought us easier standards through adoption like JSON and Yaml vs XML and EDI. Wireless, RF and telecom engineers never had an Arduino like the electronics engineers. The SoDeRa will plug this hole.

Development on SoDeRa is working towards a trend in radio systems where all radio devices are software defined, allowing for futuristic features like advanced spectrum control and the ability to change protocols on the fly. They write:

Including #SoDeRa in any type of smart device will greatly reduce the cost of deploying a mobile base station network because by open sourcing the hardware design it will become commodity. By including software defined radio in lots of devices, often with a completely different purpose, will allow these devices to become a smart cell via installing an extra app. In the future, support for software defined radio will likely be embedded directly in Intel and ARM chips. The foundational steps are already happening. This will likely reshape the telecom industry. Not only from a cost perspective but also from a perspective of who runs the network. Telecom operators that don’t deliver value will see their monopoly positions being put in danger. As soon as spectrum can be licensed on a per hour basis, just like any other resource in the cloud, any type of ad-hoc network can be setup. The question is not if but when. Open sourcing and crowdfunding will make that “when” be sooner than later. Smart operators that align with the innovators will win because they will get the app revenue, enormous cost reductions, sell surplus spectrum by the hour and lots of innovation. Other operators that don’t move or try to stop it will be disrupted. What do you want to be?

At first glance SoDeRa sounds like it will be an expensive device, but on their official website they are currently running a survey asking people what they would be willing to pay, and the lowest price given is $50 – $99. This makes it seem likely that in the future with enough volume SoDeRa could be sold at very low cost and become very popular.

I am willing to pay for 1 unit

  • $50 – $99 (lead time 9 months)
  • $100 – $199 (lead time 6 months)
  • $200 – $299 (lead time 3 months)
  • $300 – $399 (lead time 2 months)
  • $400 – $500 (lead time 1 month)

It sounds like the team behind SoDeRa are gearing up for a crowd funding campaign so we will be keeping an eye on this SDR.

Thanks to RTL-SDR.com reader Serdar (TA3AS) for submitting news about SoDeRa to us.

The SoDeRa SDR
The SoDeRa SDR
The SoDeRa PCB
The SoDeRa PCB

Meteor M-N1 Still Working, Meteor M-N2 Still Down

The Meteor M N-2 is a polar orbiting Russian weather satellite that was launched in July 2014. It transmits with the LRPT protocol which allows us to receive weather satellite images that are of a much higher resolution than the NOAA APT satellites. For a while since the launch RTL-SDR users had a good time receiving beautiful images from Meteor M-N2, but unfortunately since late last year the N2 LRPT transmitter has been turned off, due to technical problems with the IR sensors as cited by Russian meteorologists.

Fortunately for Meteor N2 enthusiasts the old Meteor M N1 satellite which was thought to be dead sprung back into life around November 2015. Recently Matthew A., a reader of our blog wrote in to let us know that while N2 is still not transmitting, N1 is still transmitting, albeit with somewhat distorted images. Matthew also mentions this link: http://homepage.ntlworld.com/phqfh1/status.htm, which contains up to date info on the status of all weather satellites. He also writes: 

  • While transmissions are readily detectable and decodable at night, it seems that M N-1’s infrared sensors are not functioning. Yielding only black, with the typical noise bars of Red, Green, or Blue
  • As has been previously mentioned, Meteor MN-1’s stabilization system has obviously failed, and the horizon is clearly visible. Perhaps not of scientific value, but certainly beautiful. 

We also note that there are several comments over on the Meteor-M N2 news and support website regarding receiving images from N1 and N2. It seems that sometimes N1 also has some problems with transmission, but they are usually quickly fixed.

Meteor M-N1 Image Received by Matthew
Meteor M-N1 Image Received by Matthew
 

Nooelec + AmateurRadio.com RTL-SDR Competition now Running

Hot on the tails of our own competition which has now closed, Nooelec and AmateurRadio.com have teamed up to create a giveaway for a HackRF One and 40 RTL-SDR dongles (some even bundled with upconverters)! They are giving away:

  • 1x HackRF One HF SDR Bundle (Includes upconverter and adapters)
  • 3x NESDR XTR+ HF bundles (a.k.a E4000 RTL-SDR + Upconverter)
  • 2x NESDR Mini 2+ HF bundles (a.k.a R820T2 RTL-SDR w/ TCXO + Upconverter)
  • 10x NESDR XTR+ sets (a.k.a E4000 RTL-SDR Dongles)
  • 10x NESDR Nano 2+ sets (a.k.a R820T2 w/ TCXO RTL-SDR in small “nano” package)
  • 15x NESDR Nano 2 sets (a.k.a R820T2 RTL-SDR in small “nano” package)

To enter all you need to do is comment on their blog post (not ours!). Their competition runs from 24 January 2016 20:00 UTC to 31 January 2016 20:00 UTC.

nooelec_comp

Competition Winners Announced!

Firstly, thanks to all who entered our competition. We saw a huge response and learned a great deal about what the RTL-SDR community is up to these days. I encourage everyone to take a look through the comments on the competition post if you’re looking for project inspiration.

We ran competitions on Twitter, Facebook, the competition post itself and on our mailing list. We randomly chose 5 winners from each competition and will be sending them each one of our RTL-SDR Blog dongles. The 20 winners have now been selected. If you missed out, don’t worry – we hope to do more competitions like this again this year!

Facebook Winners!

Winners, please check your Facebook private messages. If you don’t see it, the message may be hidden in the spam inbox.

Zim Zimmerman – Currently working hard to overcome the NOISE related to living in an apartment complex in a Seattle suburb! TWO band pass filters; shielding via Al foil wrap and a directional antenna have helped. As hams say; “Good luck in the contest OM!” 73 K4IES

Sammy Truong – Exploring quickpass highway toll system.

Jimmy Vance – Just getting started with SDR dongles. For now will use them as general purpose receivers and spectrum analyzers

Amy Cstar – I’m a newbie and I’m hoping to use this to listen to the ISS 

Cezar Lesanu – Already running a radio meteor detection setup on RMOB and frequency stability and shielding are issues:http://www.rmob.org/livedata/main.php#Cezar Lesanu_ROAN@USV

Twitter Winners!

Winners, we’ve publicly tweeted you asking you to please email us directly. Please also tweet back at us confirming that you’ve received our notification.

Xizt ‏@RECEPTORR – Will use RTL-SDR dongle for learning wide band signals and monitoring Ham radio bands.

Rooster Mcdoogle ‏@RoosterMcdoogle – My first SDR project is going to be identifying/decoding local signals, and then satellites.

Sparkie Nelson ‏@SparkieNelson – Need a cheap spectrum analyzer for balloon beacon transmitter development.

DPini ‏@DPini – Right now, I’m trying to build a QFH antenna. My intention is to recieve NOAA and CubeSats

D M Miller ‏@bentmg – Hoping to set up a dedicated sdr to decode some DMR and NXDN signals in my area for streaming if I win the giveaway!

Blog Comment Winners!

We’ve emailed all blog comment winners using the email address that was provided. Please check your spam folder if you don’t see it, or contact us directly.

Jeff – Portable rf spectrum analysis

Stephen McBain – Starting out at the basics and using a dongle to decode different signals and just learning radio.

Matt – I’m working on building a WebSDR in Bucharest with full coverage from ~15mhz to ~1700mhz (R820T2 upper limit)

John Wilkerson – I use dual dongles for monitoring p25 trunked systems, as well as aircraft tracking.

Bryan – I’m pairing the RTL-SDR with my TS-940SAT and DXLab Commander + SDR# FTW.

Mailing List Winners! (Emails obscured for privacy)

We’ve obscured the winning emails for privacy, but we’ve emailed these winners now. Please check your spam inbox too!

g___e__e.r_i___i@____.com

j____p__a@____.com

v___o_t@________.ca

m_r___n@________.net

d_b___l_+_t_s_r@_____.com

Reverse Engineering Cheap Chinese Radio Firmware

This post isn’t related to SDR, however it may interest many readers as it has the potential to become the “RTL-SDR” of handheld hardware radios. Recently at Shmoocon 2016 (a yearly hacking and security themed conference), hardware hacker Travis Goodspeed showed how he was able to reverse engineer the firmware of a cheap Chinese made Tytera MD380 DMR digital handheld radio transceiver.

The reverse engineering feat essentially means that custom firmware can now be written to the radio. They’ve already managed to add a promiscuity mode that allows the radio to be able to receive from all talk groups on a known repeater and timeslot. Access to he firmware now also means that custom decoders for protocols such as P25, D-Star or System Fusion can potentially be added to the radio’s features in the future. In the end this could turn this cheap $140 radio into a more featured radio that would be worth much more.

See the full story over at Hackaday and the white paper here (start at page 76) and the video of the talk below.

Inside the Tytera MD380
Inside the Tytera MD380

SDRDX Now supports the RTL-SDR on OSX

SdrDx is a free software defined radio application that was originally written to support SDRs built by RF Space. However these days it appears to support multiple other SDRs including the Funcube, Andrus, Peaberry/Softrock and AFEDRI SDRs.

In the latest update they have also added support for the RTL-SDR on OSX. An RTL-SDR dongle is able to connect to the SdrDx program via a special OSX based RTL-SDR server called CocoaRTLServer. At the moment it appears that rtl_tcp is not supported as it does not use the protocol required by SdrDx, so Windows and Linux computers cannot use this software.

Compared to other general purpose SDR receiving software SdrDx has some interesting features not seen in most SDR software that supports the RTL-SDR. The full feature list and list of currently supports SDRs can be found here.

The SdrDX main screen.
The SdrDX main screen.

RTL-SDR.com SDR Dongle Giveaway!

We are giving away 20 of our new units with the metal case!

Competition has now ended! Thanks to all who entered! Winners to be announced by Monday.

The RTL-SDR and SDR community spans multiple disciplines and there are many wildly different projects being worked on by SDR enthusiasts as regular readers of our blog may already know. We want to thank all our readers with a competition and at the same time get everyone to share what projects you are all working on.

There are four chances to enter the contest and you may enter in all four competitions. On each method we will give away 5 RTL-SDR blog dongle + antenna units. Competition ends in one week on the 22nd of January at 23:59 hrs (midnight) PST time. Winners will be notified in the following 1-2 days and we will do a post about it too.

Competition Entry 1) Like us on Facebook and make a comment on the the contest post mentioning what SDR related projects you are currently working on, or plan to work on in the future.

Competition Entry 2) Follow us on Twitter and tweet at us @rtlsdrblog mentioning the SDR related projects you are currently working on, or plan to work on in the future.

Competition Entry 3) Make a comment on this very blog post mentioning what SDR related projects you are currently working on, or plan to work on in the future. (Please include a contact email address in the email field – it will only be visible to us and we won’t use it for anything else, promise!)

Competition Entry 4) Sign up to our email mailing list here or on the right hand navigation menu. (we send out a once weekly digest of the weeks posts).

 

We want to hear about any and all projects, no matter how simple you might think they are! At the end of the competition we will randomly select five winners from each competition entry method and contact them. Please remember to check your Facebook/Twitter/email accounts if your name comes up when the winners are announced.

Rules: Only one entry per person per method! E.g. you can enter once on Facebook, once on Twitter, once by commenting here, and once by signing up to our mailing list. No duplicate accounts are allowed. You must be legally be allowed to receive and own an RTL-SDR dongle to enter.

New RTL-SDR Dongles with Metal Case Available in our Store

Currently we at RTL-SDR.com are selling upgraded RTL-SDR dongles on our store. We’ve worked hard to reduce the most common issues that the cheapest generic dongles have, whilst trying to not significantly increase the retail price so that these devices stay ubiquitous. In each batch that we’ve produced so far we’ve tried to make some improvements over the last. Previously we’ve added a TCXO, SMA connector, and bias tee and now in the latest batch we’ve added a metal case and passive cooling.

The new units have been in stock at our Chinese warehouse for almost a month now, and they are now back in stock at Amazon USA as well (shipping soon). They are priced the same as before: $24.95 USD for the unit with antennas and $19.95 USD for the dongle only. If you order from the Chinese warehouse all units come with free registered air mail shipping (1-4 week delivery), and free shipping is available on Amazon for USA customers (<1 week delivery) if you are a Prime member or spend over $35.

To purchase please see our store page at www.rtl-sdr.com/store.

New features in this version:

  • Aluminium case. We’ve upgraded from a plastic case and now all units come with an aluminium case standard. The aluminium is 1mm thick and is treated with an anti-anodizing coating to improve conductivity. However, some natural anodization still occurs. The dimensions are similar to the plastic case at 69 mm x 27 mm x 13 mm.
The new RTL-SDR dongle design with aluminium case.
The new RTL-SDR dongle design with aluminium case.
  • Ground tracks on the PCB. The PCB size has been increased slightly to accommodate side ground tracks. These ground tracks should make contact with the aluminium and provide ground conductivity to the case.
New RTL-SDR PCB with side ground tracks.
New RTL-SDR PCB with side ground tracks.
  • Passive cooling. As the case is now metal we can apply a thermal interface material between the PCB bottom and case wall. The interface material we’ve chosen is a 3mm thermal pad. This is a soft silicon pad with high thermal conductivity. This appears to provide adequate cooling to ensure the dongles run properly at above 1.5 GHz.
Thermal pad on the bottom of the PCB for improved heat dissipation.
Thermal pad on the bottom of the PCB for improved heat dissipation.

The metal case and side ground tracks should reduce the amount of interference received by the dongle through sources other than the antenna. The passive cooling should also be enough to ensure that the dongles run properly at above 1.5 GHz, though we still would recommend running them in a cool shady place, rather than out in the direct sun if monitoring L-band signals. If you find that the conductivity between the PCB and case is not good enough, then you can try thickening the side ground tracks on the PCB with a layer of solder – we will be trying to increase the thickness by default in subsequent batches.

Soon we will also have the metal cases for sale by themselves for those who want to upgrade from a previous batch (EDIT: Now on sale!). Though please note that although the older SMA PCBs fit in this case, the previous batches PCB’s are a little smaller than what this case takes so it may fit a little loosely. The old PCB’s also don’t have the side ground tracks for improved conductivity, but even with no ground conductivity it is still possible for the case to work as a Faraday cage. These cases will be available on the store page in a few days at a very low cost and they will only be available only from the Chinese warehouse.

Once again we hope people will enjoy these changes, and feel free to let us know what you think and what you might like to see in the future.