Reverse Engineering and Reading Data from a Wireless Temperature Meter: Tutorial + Code

On GitHub user spenmcgee has uploaded a write up and Python software that decodes data from a Lacross TX29 wireless temperature meter. Spenmcgee’s write up goes into excellent detail about how he actually wrote the program and reversed engineered the transmitter.

First he explains how he used Python to extract the data from the RTL-SDR I/Q samples. From those samples he calculates the amplitude data, and plots it on a graph which shows the digital signal. He then decimates the signal to reduce the number of samples and figures out how to detect the preamble, data bits and packet repetitions. Then to decode the signal he explains how he does clock recovery, convolution and thresholding, and also the importance and meaning of those steps.

If you’re new to reverse engineering signals and don’t have a DSP background, then spenmcgee’s write up is an excellent starting point. It’s written in a way that even a layman should be able to understand with a little effort. If you have a Lacross TX29 wireless temperature meter that you just want to decode, then his code will also be of use.

Bits detected from the RTL-SDR data.
Bits detected from the RTL-SDR data.
Subscribe
Notify of
guest

0 Comments
Inline Feedbacks
View all comments