RTL-SDR Tests: R820T vs R820T2 Stability Tests for Radio Astronomy

Amateur Radio astronomer Peter Kalberla recently wrote in to let us know about a paper he has written exploring stability issues and comparing the R820T and R820T2 RTL-SDR tuner chips (pdf warning). The R820T2 tuner is an upgrade to the R820T tuner which is used in the most commonly found RTL-SDR dongles.

Peters first results show that the R820T2 has better reception and less spurious features at frequencies above about 1.45 GHz and improved frequency stability (with the newer R820T2 dongles that use the SMD oscillator). His second set of results explore issues that are more closely relevant to radio astronomy including observed spectra, Allan variance (frequency stability) tests and determining the shape of the R820T/2 internal bandpass filter.

In the conclusion of the paper Peter writes:

Two Newsky RTL2838U dongles were tested, the R820T2 device against the R820T. The evaluation results in a clear preference for the new RTL2838U/R820T2 dongle. In the L-band the new dongle is at least 2.7 dB more sensitive. According to the radiometer equation the effective system temperature is reduced by almost 50%. Most important for reliable radio astronomical observations are stability issues. Allan variance tests have shown that the R820T2 dongle is far better then the older version. The stability is comparable to that of professional radio astronomical devices. The tests have shown that using the full bandwidth of the RTL-SDR devices results in spurious baseline ripples. For a good performance it is recommended to use the dongles at reduced bandwidth. rtl power with the crop option -c 0.5 appears to be a good choice.

Broad band performance of the R820T dongle (top) and R820T2 (bottom)
Broad band performance of the R820T dongle (top) and R820T2 (bottom)

Post a comment

You may use the following HTML:
<a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <s> <strike> <strong>