Tagged: l-band

Outernet Patch Antenna Pan-Tilt Servo

Over on YouTube user Tomi Simola has uploaded a video showing his servo based Outernet satellite antenna tracker. Outernet uses L-band geostationary satellites which means that they are at a fixed position in the sky. Optimal reception of the Outernet and other L-Band satellite signals can be obtained by pointing the patch antenna towards the satellite.

Tomi wanted an easy way to remotely switch the antenna to point at one of two geostationary satellites, Alphasat at 25E which has the Outernet signal and Inmarsat at 64E which has more services like AERO and STD-C. Another potential use of his tracker might be for tracking L-Band satellite while in a moving vehicle such as a car or boat. 

To automatically point the Outernet L-band patch antenna Tomi used a commonly found Pan-Tilt servo mounted inside an waterproof enclosure. On the servo is a 3D printed mount which the patch antenna is attached on. An Arduino Nano with Bluetooth module allows control of the servo.

The video below shows a test of the system, over on Reddit he has written a comment explaining the project and over on Imgur he’s uploaded some photos of the construction.


Building a Wideband Vivaldi Antenna for SDR Use

Vivaldi’s are linearly polarized broadband antennas that have a directional radiation pattern at higher frequencies. The high end SDR manufacturer RF Space produces their own Vivaldi antennas made from PCB boards which they sell online. The larger the antenna, the lower its receiving frequency, and ones that go down to about 200 MHz are almost the size of a full adult person. But all sizes receive up to 6 GHz maximum. Typically smaller versions of Vivald antennas have been used in the past for L-Band satellite reception.

Over on his blog KD0CQ noted that he always had trouble trying to purchase a Vivaldi from RF Space because they were too popular and always out of stock. So he decided to try and build his own out of PCB boards. On this page he’s collected a bunch of Vivaldi cutout or transfer images. On his second page he shows a Vivaldi antenna that he built out of PCB material, just by using scissors and semi-rigid coax. With the Vivaldi placed outdoors he’s been able to successfully receive and decode L-Band AERO on his Airspy Mini even without an LNA. 

KD0CQ writes that he’ll update his blog soon with more results.

Simple Vivaldi antenna by KD0CQ cut out of PCB board.
Simple Vivaldi antenna by KD0CQ cut out of PCB board.

30% Off Outernet L-Band RTL-SDR DIY Kits – $70 for RTL-SDR, LNA, Antenna, CHIP and Battery

Outernet is an L-band satellite service that aims to be a “library in the sky”. They are constantly transmitting data such as up to date news, weather updates, Wikipedia pages, books, ISS APRS repeats and much more. Their DIY receiver kit consists of a lithium battery pack, L-band patch satellite antenna, LNA with built in filter, C.H.I.P mini Linux computer and an RTL-SDR E4000 or V3.

The DIY kit is normally priced at $99 USD, but right now they are running a 30% off Christmas promotion, bringing the price down to $69.30 USD. If you don’t need the battery pack, the sale price is then only $55.30 USD. This seems like a very good deal as normally just the patch antenna and Outernet LNA would be almost $50 USD in total.

To get the discount you must purchase directly from their store and use the coupon 30OFF. The promotion ends 31 December 2016 at 11:59 PM CST so get in quick.

The Outernet items you get for $70 USD.
The Outernet items you get for $70 USD.

Two Videos That Show How To Set Up An Outernet Receiver

Outernet is a relatively new satellite based file delivery service which can be received with an RTL-SDR dongle. They continuously send out useful data like weather reports, news, APRS data as well as files like Wikipeda pages, images, videos and books. Previously we posted a tutorial that shows how to set up an Outernet receiver here.

If you instead prefer video tutorials, then two YouTube channels have uploaded Outernet set up tutorials. The first tutorial is by MKme Lab. In this video they set up Outernet using a Raspberry Pi and a Lipo battery for portable operation. Once setup he shows the Outernet browser and weather app in action.


The second video is by John’s DIY Playground and is similar, but goes a bit deeper into setting up the software on the Raspberry Pi and shows how to point the patch antenna towards the satellite.


L-Band Setup with Mini LNA4ALL and Mini Patch Antenna

Over on his YouTube channel Adam 9A4QV has uploaded a new video showing reception of L-band signals with a bias tee powered LNA4ALL and a small patch antenna. The video seems to show a new miniature bias tee powered LNA4ALL device that Adam might be working on. The LNA4ALL is a low noise amplifier that works well with our bias tee capable RTL-SDR dongles.

The patch antenna is made out of a single piece of PCB board which was made by etching out the patch pattern with masking tape. While the patch antenna is not optimal, and tested indoors, Adam is still able to receive some AERO signals.

Later in the video he compares the PCB patch against a GPS patch antenna which gets no reception. He also compares the results when two LNA4ALL’s are used in series. Using two LNA’s improves reception slightly.


Outernet rxOS Version 3 Released: Automatic Decompression, APRS, NOAA Weather Data, News Updates

Outernet is a new L-band satellite services which aims to be a “library in the sky”. Their satellite signal can be received from almost anywhere in the world, and they aim to constantly transmit data like news, weather updates, books, images/videos and other data files. The service is free and can be received with an RTL-SDR, LNA and patch antenna. We have a full tutorial on receiving their service available here.

The “rxOS” decoder, file management system and web interface GUI has recently been updated to version 3.0. This new version has several new features:

  1. Downloaded files are automatically decompressed after downloading, so they can be viewed directly in the Outernet web interface.
  2. An hourly transmission of APRS data which comes from the repeater on board the international space station. APRS messages can now be relayed across the world via the ISS and Outernet.
  3. This Monday they will begin transmitting NOAA weather data (we are unsure if this entails images or text data yet)
  4. Soon they should begin transmitting news data too.

More details on the update can be found on their forum post. To update the service on a CHIP or Pi 3, download the .pkg file from the links on the forum and choose this file in the Update Firmware section of the Outernet settings menu. 

An example of some received APRS messages from the Outernet.
An example of some received APRS messages from the Outernet.
APRS messages

The 20th Cyberspectrum Software Defined Radio Meetup

Every month SDR evangelist Balint Seeber hosts the Cyberspectrum Meetup in San Francisco, where many SDR fans come together to listen to various presentations. The 20th Cyberspectrum SDR meetup has now concluded, and the recorded video is available on YouTube.


The talks this time include a very interesting talk by Joe Steinmetz (@usa_satcom) about decoding L-Band weather satellites such as NASA GOES. Previously we made a post regarding GOES where Reddit user devnulling showed his GOES reception setup. To save time, on the video Joe’s talk starts at 00:10:45.

This presentation will cover most aspects of receiving, demodulating and decoding current L-Band Weather Satellite signals (NOAA, MetOp, Meteor, FengYun, GOES). Topics will include hardware, software, de-modulation/decoding techniques, challenges, flows as well as cool sample images and data.


 The second talk is titled “Disposable, Stealthy, Cheap SIGINT” is by Chris Kuethe, @kj6gve and delves into topics relating to low cost signal analysis. Chris’ talk starts at 1:45:00. The blurb reads:

This presentation covers some observations and considerations for using inexpensive and compact ARM boards for signals analysis.  Topics may include: power budget, air interface, attributability, performance tuning, lolcats and doges.


A Video Explaining LNA Noise Temperature Calculations

Over on YouTube Adam 9A4QV (creator of the LNA4ALL and other products) has uploaded a video that explains Friis formula for noise, using simple calculations and theory. These calculations explain why an LNA can significantly help reception on L-Band with an RTL-SDR. In his video he uses graphs and tables provided in this document released by the US Naval Academy. At the end of this post we attached images of the graph and table that he uses in the videos calculations for easy access.

The calculations show how the noise figure and gain of the first LNA in the system dominates the result. The final result of his video shows that using an LNA with a noise figure of 1 dB and 16 dB gain can give an improvement in SNR of about 7.8 dB over a standard RTL-SDR which has a noise figure of 6 dB. This is the improvement on L-band from simply placing the LNA by the dongle, and it does not take into account the extra improvement that could be had by placing it by the antenna, if a run of coax is used. The equations can also be adapted to other frequencies, and they show that as the frequency decreases, the effect of the noise figure of the LNA becomes less important.