
gr-ais i SuSE12.3

First a Warning! Never use gr-ais in real navigation it's neither stable or reliable. The
description below is just made for ”amusement” in the purpose of getting ”real-time” updated
AIS-messages to OpenCPN!

Suggestions for suitable DVB-T USB-dongles
you can get from here: http://www.reddit.com/r/RTLSDR/comments/s6ddo
In he examples below we used two different USB-recievers: One Newsky TV28T Coax DVB-T
DAB DAB+ FM Stick SDR with RTL2832U-chipset and E4000-tuner, respectively a LIFEVIEW
NO DVB-T USB DELUXE LV5T with rtl2832 chipset and fc0013 tuner. -We both live in in
different places in Stockholm, neither of us, living within 1000 m from the sea (or lake), 10 resp. 45
m above sealevel, have got a visible contact with a harbor. We both used the small indoor antennas
that came with the dongles.

Prerequisites

The description below comes from an installation in OpenSuSE12.3 with kernel 3.7.10-1.1-desktop,
in both cases x86_64. The reason we used such a new version was due to a basic misunderstanding.
We thought that the cipset-modules rtl2832 and tuner-modules fc0013 or e4000 respectively were
necessary for being able to install gnuradio. Kernel support for those modules were first integrated
in kernel 3.6 →.

Many observations after our installation indicated that our assumption was wrong. -Finally we tried
it out by shutting them -and the other dvb-t-modules- down using blacklist/rmmode.
To our surprise gnuradio worked perfectly without them!
Note: the modules rtl2832 and fc0013/e4000 are not necessary for running gnuradio, rtl-sdr,
osmosdr or gr-ais. You only need them if you want to use the USB-receiver for watching digital TV
(DVB-T) and listen to digital radio (DAB) with the ordinary Linux softwares. Therefore we won't
go further about those modules here (f.i. different workarounds, special ways of building them
a.s.o)
This means, do you want to watch DVB-T et c with ordinary software you should have kernel 3.6 or
higher. If you only want to be able to run gnuradio and it's modules it should work at least from
kernel 2.6 and higher. (We have seen examples of installations in f.i. Ubuntu10.04lts).

If you want to get your kernel version, simply open a terminal and execute:
$ uname -a
(Below I consequently use $ to indicate a user-command and # to indicate a command as superuser
if anyone should be confused. You never see $ in SuSE-Gnome-terminals though.)

Installation of the depedencies
(for the builds and softwares)

Repositories:
Here we have used quite ”standard” openSUSE repositories:
zypper repositories: Ordinary openSUSE + updates, repo-oss, repo-non-oss, Education, Factory-
Packman, Packman, server:/php/applications

Adjust your PATH:
Add following to your PATH so your ”builds” finds the needed libraries when placed in the
”unordinary” /usr/local/:

http://www.reddit.com/r/RTLSDR/comments/s6ddo

That is, open the file .bashrc in your users home (~/ means your users home-library)
Open ~/.bashrc and in your favorite texteditor add the following lines and save it:
PKG_CONFIG_PATH=$PKG_CONFIG_PATH:/usr/local/lib/pkgconfig
export PKG_CONFIG_PATH
PYTHONPATH=$PYTHONPATH:/usr/local/lib64/python2.7/site-
packages:/usr/lib64/python2.7/site-packages
export PYTHONPATH
LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/lib:/usr/local/lib64
export LD_LIBRARY_PATH
This could possibly be done in a better way, anyway the above worked for it's purposes.

Installation of build- and other software dependencies.
(Here we include the dependencies from the build of OpenCPN because we have done that in our
systems and wouldn't risk to miss any dependencies for the gnuradio-build that we might possibly
have installed before.)
Possibly this zypper install is somewhat ”overkill” but, better than insufficient:
zypper install git cmake gcc-c++ libstdc++-devel gtk2-devel rpm-build libcppunit-devel doxygen
fftw3-devel gsl-devel libjack-devel libqt4-devel libSDL-devel libusb-1_0-devel orc portaudio-devel
libportaudio2 python-cheetah python-devel python-lxml python-wxWidgets python-wxWidgets-
devel libqwt5 qwt-devel gettext-runtime gettext-tools wxWidgets-wxcontainer-devel libbz2-devel
gpsd-devel xmlto tinyxml-devel swig python-scipy python-sphinx python-docutils python-
matplotlib-wx

To this comes the boost-package from http://software.opensuse.org/package/boost :
If you -like me- don't manage to install this, at least the following boost packages (that I had
installed earlier for other reasons) should be sufficient (or even ”overkill”):
zypper in boost-jam-201104 boost-license1 boost-devel libboost_locale1 libboost_iostreams1
libboost_filesystem1 libboost_serialization1 libboost_timer1 libboost_python1 libboost_test1
libboost_program_options1 libboost_chrono1 libboost_date_time1 libboost_graph1 libboost_wave1
libboost_system1 libboost_regex1 libboost_mpi1 libboost_random1 libboost_math1
libboost_thread1 libboost_signals1

To this a sourcecode installation:
Get comedilib 0.10.1 from http://www.comedi.org/download.html
Navigate your terminal to the downloaded directory
$ cd comedilib-0.10.1
Read the INSTALL notes: from there:
configure with the following -flag
./configure --with-udev-hotplug=/lib --sysconfdir=/etc
make
$ su
Password:
make install

Note! Though these basic installations are very extensive there is still a risk that we have forgotten
something? Our SuSE12.3-installs are not fresh, we have used them for many other builds and
installations. We've tried to make it as complete as we could though, but if we've missed some
dependencies you'll notice it from the error-reports when running ./configure or cmake below. If any
you can go back and complete your dependency-installation from those reports. -That's basically
how we got along to finally succeed.

There is also a possibility that some of the packages above have got dependencies that are installed

http://software.opensuse.org/package/boost
http://www.comedi.org/download.html

later in this decription. Packages like f.i. libusb-1_0-devel python-cheetah or swig? Don't worry, I'll
repeat them again when they should install with no problem. Just retry then.

Installation of gnuradio, rtl-sdr, osmosdr and gr-ais

Note! It is -as far as we have learned- important to install the software in the order we have listed
them below!

1. rtl-sdr
http://sdr.osmocom.org/trac/wiki/rtl-sdr
http://inst.eecs.berkeley.edu/~ee123/fa12/rtl_sdr.html
If you didn't initially: Now install the dependency:
zypper in libusb-1_0-devel

[As you may note, the repetition here of the requirements and dependencies from above get
somewhat contradictory and confusing. Here you might miss cmake, git and others that comes
below and you are perfectly right! These repetitions are only reminders if you didn't get all in your
initial zypper installation!]

Get rtl-sdr:
$ git clone git://git.osmocom.org/rtl-sdr.git
$ cd rtl-sdr/
$ mkdir build
$ cd build/
$ cmake ../ -DINSTALL_UDEV_RULES=ON [flag from the osmocom-link above]
$ su
password:
make install
The now created /etc/udev/rules.d/rtl-sdr.rules might now have to be renamed: from rtl-sdr-rules to
99-rtl-sdr.rules:
cd /etc/udev/rules.d/
mv rtl-sdr.rules 99-rtl-sdr.rules

Now test your USB-stick with rtl-sdr (the ”answers” and values below are only given as examples):
$ su
Password:
udevadm control --reload
rtl_test -t
Found 1 device(s):
 0: Lifeview LV5TDeluxe

Using device 0: Lifeview LV5TDeluxe
Detached kernel driver
Found Fitipower FC0013 tuner
Supported gain values (23): -9.9 -7.3 -6.5 -6.3 -6.0 -5.8 -5.4 5.8 6.1 6.3 6.5 6.7 6.8 7.0 7.1 17.9 18.1
18.2 18.4 18.6 18.8 19.1 19.7
No E4000 tuner found, aborting.
Reattached kernel driver
larse3:/home/larse #

Now test your stick's maximum "samplerate"...
To check the maximum samplerate possible on your machine,

http://sdr.osmocom.org/trac/wiki/rtl-sdr
http://sdr.osmocom.org/trac/wiki/rtl-sdr
http://inst.eecs.berkeley.edu/%7Eee123/fa12/rtl_sdr.html

type (change the rate down until no sample loss occurs):

$ rtl_test -s 3.2e6
lost bytes continously

$ rtl_test -s 2.8e6
lost bytes continously

$ rtl_test -s 2.6e6
just one lost post!

$ rtl_test -s 2.5e6
No lost posts!

Max samplerate för my LV5TD: 2.5e6

2a. comedi

If not initially done:
Get and install comedi as sourcecode from http://www.comedi.org/download.html
Unpack (tar -xvzf et c) and install comedilib 0.10.1 src
Read the file INSTALL..
$./configure --with-udev-hotplug=/lib --sysconfdir=/etc
$ make
$ su
Password:
make install

2b. gr-uhd

If not initially done: First install the dependencies:
zypper in boost-devel python-cheetah doxygen python-docutils

Get uhd from Ettus:
$ git clone git://github.com/EttusResearch/uhd.git
$ cd uhd/host
$ mkdir build
$ cmake ../
$ make [seems to work all the way]
su
#make install [seems ok]

With your favourite texteditor: Create a file /etc/ld.so.conf.d/uhd.conf
cd /etc/ld.so.conf.d/
vim uhd.conf
Just add the line: /usr/local/lib Save and Close.
Then execute
/sbin/ldconfig
[ldconfig creates the necessary links and cache to the most recent shared libraries found in the directories
specified on the command line, in the file /etc/ld.so.conf, and in the trusted directories (/lib and /usr/lib).]

(Here we skip gr-shd as we didn't get shd working with our installations of gnuradio. shd is

http://www.comedi.org/download.html

not essential to gr-ais!)

2c. gnuradio

If not done initially: Install the buildrequirements and dependencies:
zypper in cmake libcppunit-devel doxygen fftw3-devel git gsl-devel libjack-devel libqt4-devel
libqwt5 libSDL-devel libusb-1_0-devel orc libportaudio2 portaudio-devel python-cheetah python-
devel python-lxml python-wxWidgets python-wxWidgets-devel qwt-devel wxWidgets-
wxcontainer-devel xmlto

If you havent done initially: Also install:
zypper in swig python-devel python-sphinx python-scipy

If not initially done: Get boost from http://software.opensuse.org/package/boost
Alternately install the boost-packages listed in the introduction.

Get gnuradio from http://gnuradio.org/redmine/news/19
Unpack it
$ tar xvfz gnuradio-3.6.4.1.tar.gz
$ cd gnuradio-3.6.4.1
$ mkdir build
$ cmake ../ -DQWT_INCLUDE_DIRS=/usr/include/qwt5 -DENABLE_GR_SHD=OFF
[-DQWT_INCLUDE_DIRS=/usr/include/qwt5 is to give the path to qwt, so it can be found
shd didn't work with our gnuradio's (therefore you can skip to build and install it), hence the last
flag (-DENABLE_GR_SHD=OFF)]
$ make
$ su
Password:
make install
Installs in /usr/local.

3.gr-osmosdr

$ cd /home/larse/bin/git
Get osmosdr from git
$ git clone git://git.osmocom.org/gr-osmosdr
$ cd gr-osmosdr
$ mkdir build
$ cd build
$ cmake ../
-- ##
-- # gr-osmosdr enabled components
-- ##
-- * FunCube Dongle
-- * IQ File Source
-- * Osmocom RTLSDR
-- * RTLSDR TCP Client
-- * Ettus USRP Devices
--
-- ##
-- # gr-osmosdr disabled components
-- ##

http://software.opensuse.org/package/boost
http://gnuradio.org/redmine/news/19

-- * Osmocom IQ Imbalance Correction
-- * sysmocom OsmoSDR
-- * Osmocom MiriSDR
-- * HackRF Jawbreaker
$ make
$ su
Password:
make install

With this basic installation you now have got access to among other things rtl-sdr-FM-radio.
And from here you can easily add a lot of gnuradio-”modules”, like gr-ais, gr-air-modes,
dabreciever, fm-reciever et c. In the following we concentrate on gr-ais.

4. gr-ais

Get gr-ais from github:
$ cd /home/larse/bin/git [It's simply were I keep my git downloads, you can put them anywhere in
your users home]
$ git clone git://github.com/chgans/gr-ais.git
$ cd gr-ais
$ mkdir build
$ cd build
$ make
$ su
Password:
make install
Installs in /usr/local/

Using gnuradio-gr-ais

Now I start gr-ais help (to get the basic flags):
$ ais_rx.py -h
Usage: ais_rx.py [options]

Options:
 -h, --help show this help message and exit
 -a ADDR, --addr=ADDR UHD source address
 -s SUBDEV, --subdev=SUBDEV
 UHD subdev spec
 -A ANTENNA, --antenna=ANTENNA
 select Rx Antenna where appropriate
 -e ERROR, --error=ERROR
 set offset error of USRP [default=0]
 -g dB, --gain=dB set RF gain
 -r RATE, --rate=RATE set fgpa decimation rate to DECIM [default=256000.0]
 -F FILENAME, --filename=FILENAME
 read data from file instead of USRP
 -v, --viterbi Use optional coherent demodulation and Viterbi decoder
 -t, --tcp Start a TCP server on port 9987 instead of outputting
 to stdout. Useful for gpsd.
 -d, --rtlsdr Use RTL-SDR dongle
 -D ARGS, --args=ARGS arguments to pass to UHD/RTL constructor

 Expert:
$

Flags -d: use rtl-sdr stick/dongle, -e frequency correction, -t send as tcp-out to 127.0.0.1:9987
First check the frequency correction value (e) for your ”warm” USB-tuner, that is when it has
reached it's stable working temperature:
Note! To find and set the right value for the frequency correction ”e” ppm is, beside the properties
of the antenna essential to at all being able to use gr-ais, or getting anything useful out of your
stick/dongle! Note!

Checking frequency correction ”e”:
three and a half different ways are described

Checking the frequency correction ”e” using Gnu Radio Companion
(earlier
$ grc)
now
$ gnuradio-companion

Start GRC, Open and run http://steve-m.de/files/rtl2832/gr-ais.grc from
http://www.reddit.com/r/RTLSDR/comments/100lrn/need_help_on_how_to_use_a_realtek_dvbt_do
ngle_to/
Use the picture the author refers to as a reference (http://rof.li/pic/ais.png).
It is really not easy to find the correct frequency correction this way, but a suggestion might be:
Adjust the Reference Level upwards (+) so that the sidefrequencies get close to the base level 0.
Now vary the frequency correction with the slider in the upper field (or writing the values) step by
step by f.i. values of 10 or 20.
For every new value of frequency correction you set: un- and re-check Peak hold on the right side
of the interface ”Options” (This zeroes/resets the up to now achieved accumulated peak value that is
not adequate for your new set value of frequency correction.).
When you in this way get a green peak-curve that is as narrow and sharp as possible it is probable
that you've got a fairly good correction value for your tuner and a value for the flag ”e” in ais_rx.py

Below two pictures where I try 0 and -130 as frequency error correction. -130 I got from stepping
the way described above.

Frequency correction e=0

http://steve-m.de/files/rtl2832/gr-ais.grc
http://www.reddit.com/r/RTLSDR/comments/100lrn/need_help_on_how_to_use_a_realtek_dvbt_dongle_to/
http://www.reddit.com/r/RTLSDR/comments/100lrn/need_help_on_how_to_use_a_realtek_dvbt_dongle_to/
http://rof.li/pic/ais.png

Frequency correction e=-130

Checking the frequency correction ”e” using SDR# (what I myself found to be simplest)
Note! SDR# requires the Mono Integrated Development Environment
(http://rtlsdr.org/softwarelinux http://monodevelop.com/) to be installed, but this cannot be covered
here.

See http://www.atouk.com/SDRSharpQuickStart.html
SDR# ”e” is as mentioned frequecy correction in PPM
Use http://www.atouk.com/SDRSharpQuickStart.html#adjusting as a guide
First let the tuner reach working temperature, or it will slide in frequencies
Start SDR#
$ mono /directory/for/your/Release/SDRSharp.exe
Try set a frequency you know that contains a stable signal. (Me using the ordinary radio FM
broadcasts in Sweden)
Increase Zoom and possibly Contrast till you can see if the middle of the signal (lower field) is
centered over your ”scan-line” (upper field)
If the middle of the signal is to the left of the scan-line: Open Configure (Button in the tool bar),
(possibly check Tuner AGC)
Now increase Frequency correction (ppm) till the signal is centered under the scan-line.
If the middle if the signal is to the right of the scan-line: Open Configure (Button in the tool bar),
Decrease the Frequency correction until the signal is centered under the scan-line.
The frequency correction that centers your signal corresponds to the e-value for your tuner.

http://rtlsdr.org/softwarelinux
http://monodevelop.com/
http://www.atouk.com/SDRSharpQuickStart.html
http://www.atouk.com/SDRSharpQuickStart.html#adjusting

Below two pictures where I step down from the frequency correction e=-80 to e=-130

e=-80

e=-130

Checking the frequency correction ”e” using RTLSDR-Scanner
http://eartoearoak.com/software/rtlsdr-scanner
An additional way to get a value for ”e” for your tuner is using RTLSDR-Scanner, that gives a at
least virtually more accurate value for ”e” than GRC or SDR#.
Note! RTLSDR-Scanner must be executed from your downloaded directory RTLSDR-Scanner/src
Note!

If not done initially: First install the dependency python-matplotlib-wx
zypper in python-matplotlib-wx
The following NEW packages are going to be installed:
 python-dateutil python-matplotlib python-matplotlib-wx python-six python-tz

Get RTLSDR-Scanner from
git://github.com/EarToEarOak/RTLSDR-Scanner.git
$ cd /home/larse/bin/git
$ git clone git://github.com/EarToEarOak/RTLSDR-Scanner.git
$ cd RTLSDR-Scanner
Note! readme.md contains very useful information. Note!
$ cd src

Check that all dependencies are at hand:
Execute:
$ python rtlsdr_scan_diag.py

http://eartoearoak.com/software/rtlsdr-scanner

rtlsdr_scan_diag
Tests for missing libraries
pyrtlsdr not found
 Download from 'https://github.com/roger-/pyrtlsdr'

Now get and install pyrtlsdr from git://github.com/roger-/pyrtlsdr.git [not done before!]
$ cd ../.. [in my home it's just a way to get back to my home/bin/git library]
$ git clone git://github.com/roger-/pyrtlsdr.git
$ cd pyrtlsdr
Read readme.md
$ su
Password:
python setup.py install
exit

Navigate with the terminal back to your library RTLSDR-Scanner/src
$ cd RTLSDR-Scanner/src
Check again for any possible other dependencies:
Execute:
$ python rtlsdr_scan_diag.py
No problems found

Now execute RTLSDR-Scanner [from it's library RTLSDR-Scanner/src]
$ python rtlsdr_scan.py
The scanner now runs a basic scan of the frequency band 87-108 MHz
The band we are interested in are the AIS-frequencies (vessels)
Channel 87: 161.975 MHz (AIS, digital)
Channel 88: 162.025 MHz (AIS, digital)
and that the tuner is reasonably right set for those, or actually the mid-frequency 162.000 MHz.
(Earlier with GRC and SDR# I haven't managed to get any closer than -e~-130)
In the tool bar of RTLSDR-Scanner->Tools: Auto calibration: ”calibrate against a known stable
signal”. It's hard to set the AIS-frequencies as ”known stable signals”, there is a carrier but not
much more when no one is using them.

If I for instance try 162.025 the result gets very confusing compared to what I have achieved with
GRC and SDR# (e=1046.382 ppm and several peaks)?
-Therefore as with SDR# I choosed one of the frequencies in the Swedish FM-band: 92.400 MHz
and executed from toolbar->Tools->Auto Calibration: Calibrate:

https://github.com/roger-/pyrtlsdr

that gives Correction (ppm) e=-130.952 ppm
By repeated tests within the Swedish FM-band on ”known stable signal transmitters” it turns out
that the e-values from RTLSDR-Scanner are not very stable.
This could indicate that my tuner is unstable, but the use of it with gr-ais and an error correction of -
130 contradicts that. With as little as a deviation of 20-30 from correct e it shouldn't receive any
signals, but it does in a stable way.
To check for a correct value for the frequency correction ”e” is as seen no simple task, nevertheless
essential. If you're as little as 20-40 ppm wrong, the reception of AIS-messages will fail!

Summary of the frequency correction (and a manual way to fine tune it)
For me with the FC0013 tuner the baseline value, given in SDR#, the frequency correction is -130,
that is the same as for my friend Håkan with his E4000-tuner. This is the baseline value for e I'll use
in the gr-ais command:

$ ais_rx.py -d -e -130
linux; GNU C++ version 4.7.2 20130108 [gcc-4_7-branch revision 195012]; Boost_104900;
UHD_003.005.002-56-g34052015

gr-osmosdr 871f0cc2 (0.0.1git) gnuradio 3.6.4.1
built-in device types: file fcd rtl rtl_tcp uhd
Using device #0 Realtek RTL2838UHIDIR SN: 00000001
Detached kernel driver
Found Fitipower FC0013 tuner
A: Sampling @ 256000.000000, decim @ 4
>>> gr_fir_ccc: using 3DNow!Ext
Using Volk machine: sse2_64_mmx_orc
>>> gr_fir_fff: using 3DNow!
>>> gr_fir_ccf: using 3DNow!
B: Sampling @ 256000.000000, decim @ 4
/home/larse/.gnuradio/prefs/gr_vmcircbuf_default_factory: No such file or directory

gr_vmcircbuf_createfilemapping: createfilemapping is not available
!AIVDM,1,1,,B,33u2AV5P001BUgnQtHqeN?wb0000,0*22
!AIVDM,1,1,,B,B3uDniP000Da;l8O6VL03wp5oP06,0*23
!AIVDM,1,1,,B,H3uDniTlDBE5847C:970000P;220,0*31
!AIVDM,1,1,,A,53u2AV01VPKu<TDb2210thHu9>2222222222221?5H;466se074sS@C0DTm4PC

ou now can use your baseline value to start a fine tuning of your tuners error correction. It can

ges you get in a certain amount of time.

aseline value, note the output, then from that value step upwards and downwards in

n the form of ”!AIVDM et c” and

ettings OpenCPN
sd: During the installation of dependencies we included gpsd-devel:

 in a

rk

ettings OpenCPN (without gpsd):

rk

0.1

re below (though in swedish):

Q8888888,0*59

Y
though be somewhat time consuming but is worthwhile.
You simply start gr-ais and note the number of AIS-messa
This of course requires that you know there are any reasonably continous AIS-transmitters in your
surroundings!
You take your b
steps of say 5 units and for each value of e you note the output.
Note! It can take up to a minute before the first message comes i
up to 5 minutes before you receive more. It takes lot of patience, but is as I said worthwhile!

S
A note concerning gp
Myself earlier in OpenCPN never succeeded to get my Garmin-GPS connect to OPENCPN
stable way using gpsd. Therefore I removed gpsd and gave my GPS a fixed serial connection in
OpenCPN (/dev/ttyUSB0). In a similar way I here gave the gr-ais' AIS-TCP-server a fixed netwo
connection. Hopefully you've got better luck with gpsd!

S
Options: Connections:
Add connection:
Properties: Netwo
Protocol: TCP
Address: 127.0.
DataPort: 9987
Or as in the pictu

Under Ships Tab AIS Targets: Set the Display/Alerts et c you want.

With gr-ais I now send the AIS-NMEA-outdata over tcp (flag -t) to OpenCPN
$ ais_rx.py -d -e -130 -t
linux; GNU C++ version 4.7.2 20130108 [gcc-4_7-branch revision 195012]; Boost_104900;
UHD_003.005.002-56-g34052015

gr-osmosdr 871f0cc2 (0.0.1git) gnuradio 3.6.4.1
built-in device types: file fcd rtl rtl_tcp uhd
Using device #0 Realtek RTL2838UHIDIR SN: 00000001
Detached kernel driver
Found Fitipower FC0013 tuner

A: Sampling @ 256000.000000, decim @ 4
>>> gr_fir_ccc: using 3DNow!Ext
Using Volk machine: sse2_64_mmx_orc
>>> gr_fir_fff: using 3DNow!
>>> gr_fir_ccf: using 3DNow!
B: Sampling @ 256000.000000, decim @ 4
Connections: 1
Connections: 2
Connections: 3
Connections: 4
Connections: 5
Connections: 6
Connections: 5
Connections: 4
Connections: 3
Connections: 2
Connections: 1

Ctrl(Right)Click in the the chart display in OpenCPN: AIS Target List
In the list that in due time comes up you can mark a line for a ship your interested in and press
Ship/Vessel info.

Provided that there are som vessels transmitting ais in your surroundings you should now be able to
see something in OpenCPN. Below two examples:
The ”black vessel” on shore is the GPS-position of my indoor antenna ;-)

As you can see my little indoor antenna can receive signals from transmitters quite far away.

Systemdemands
gr-ais demands quite a lot of your system. In the example below I installed it on a reasonably old
AMD64 machine with a single core AMD3000+ processor with nVidia bridges:
$ ps aux
USER PID CPU MEM VSZ RSS TTY STAT START TIME COMMAND
myself 10389 41.2 4.5 1274176 92852 pts/0 Sl+ 19:49 11:08 /usr/bin/pytho

The work that at last led to a working installation:
A ”joint venture” by Håkan Nilsson, Lidingö and Lars Edman, Stockholm.

Responsible for this description (including all possible errors and lacking information):
2013-05-03
Lars Edman
Stockholm
Sweden

