NOAA using the SDRplay RSP2 and RTL-SDR for Receiving Weather Balloon Data

NOAA RSP2 setup for Receiving Radiosonde Data
NOAA RSP2 setup for Receiving Radiosonde Data

Over on the SDRplay forums there has been a post by a NOAA engineer showing how they are using SDRplay RSP2 units in the field for tracking their radiosonde weather balloons. A radiosonde is a small sensor package and transmitter that is carried high into the atmosphere by a weather balloon. It gathers weather data whilst transmitting the data live back down to a base stations. You can get data such as temperature, pressure, humidity, altitude and GPS location.

Bobasaurus' coworker launching a weather balloon.
Bobasaurus' coworker launching a weather balloon.

The NOAA engineer on the forum (handle 'bobasaurus') wrote SkySonde, which is the software used by NOAA to decode and plot data from the radiosondes. SkySonde is freely available for public download on the NOAA website. A PDF file showing how to use the SkySonde software with an RSP2 or RTL-SDR can be found here, and the full SkySonde manual is available here. The software consists of a client and server, with the server connecting to the RSP2 or RTL-SDR, and then sending data to the client. Both server and client can run on the same PC.

The hardware setup consists of an RSP2 (can be interchanged with an RTL-SDR), an Uputronics Radiosonde Filtered preamp and a Yagi antenna. Presumably a Yagi and LNA is not completely required, although the receivable range will be less. The RSP2 bias tee is used to power the preamp, and on a V3 RTL-SDR the bias tee should also work.

NOAA appears to use the iMet brand of radiosondes which transmit a Bell 202 signal. Bobasaurus writes that they transmit in the 401-405 MHz range. This video shows an example of such a signal. If you are in the US near an area that launches these iMet weather balloons you should be able to receive them. An alternative piece of software that supports iMet radiosondes is RS. For other radiosondes we have a tutorial that uses SondeMonitor available here.

SkySonde Radiosonde Software
SkySonde Radiosonde Software

Several new SDRPlay RSP1A Reviews

Like the HF+ mentioned in the previous post, the RSP1A SDR was also recently released and has now had enough time in the wild to gather up a few online reviews. If you didn't already know, the $99 US SDRplay RSP1A is a revision of the RSP1. Compared to the RSP1 it significantly improves the filtering and front end design. We have our own review of the RSP1A unit here, and we mentioned some early reviews from other bloggers in this linked post. Below we post some of the new reviews that we are aware of which have come out since our last post.

Robert Nagy

In his video Robery Nagy does a full review of the RSP1A including a 15 minute primer on SDRs. This is great if you want a brief introduction to understanding how SDRs actually work, and what performance measures are important for comparing them. In the second half of the video Robert shows how to use SDRuno and shows the RSP1A in action.

Mile Kokotov

In this video Mile Kokotov demonstrates the HF+ receiving a CW contest in his home country of Macedonia with the RSP1A and a full-size half wave resonant dipole antenna. He writes:

CQ World Wide DX Contest (CW) receiving in Macedonia with SDRplay RSP1A SDR-receiver and SDRuno software on 80m-Band with full-size half-wave (40 meters long) resonant dipole antenna.

Contest conditions are always big challenge to any receiver dynamics. Here you can see only 60 kHz wide frequency spectrum fulfilled with many competitor stations "fighting each other". In addition, there are local radio-station (only 1 km from my place) with huge signal...

The Radio Hobbyist

In The Radio Hobbyist's video on YouTube Rick (VE3CNU) unboxes his RSP1A and shows the setup and download of SDRuno. He then goes are demonstrates reception on various signals.


In icholakov's video on YouTube he compares the older RSP1 with the newer RSP1A on medium wave and shortwave reception using a dipole in a noisy suburban RF setting. Differences are hard to detect as the signals he tests with are not likely to cause any overloading issues, but the RSP1A does seem to have a slightly less noise.

Several new Airspy HF+ Reviews

The new Airspy HF+ SDR receiver has now been shipped to multiple customers and reviewers, and new reviews are coming online fast. If you weren't already aware, the Airspy HF+ was a hotly anticipated low cost, but high performance HF speciality SDR receiver. The claims are that it can compete with the high end $500 US+ units. We have our own review of an early model here. Below are some new reviews that we are aware of.

Nils DK8OK's photo of the Airspy HF+.
Nils DK8OK's photo of the Airspy HF+.

Nils Schiffhauer - DK8OK

On his blog Nils presents us with a comprehensive set of audio recordings comparing the $525 US Elad FDM-S2 with the $199 US Airspy HF+. He compares the two receivers on various shortwave broadcast stations, time stations, and an airport VOLMET. The recordings are identical, with the two radios recording the same signals simultaneously via a splitter.

Both receivers produce excellent results so you will probably need headphones and keen ears to be able to tell the difference.

Mile Kokotov

In this review YouTube video Mile Kokotov presents a comparison of the Airspy HF+ vs. the ColibriNANO, a similarly specced SDR dongle. He writes:

In this video I am comparing two high quality SDR Receivers: Airspy HF+ and ColibriNANO. They both have 16 bit Analog-to-Digital Converter. Comparison was made with the same overall conditions.

For example, both receivers was set with equal size spectrum windows, with the same amount of decibels in their scale, and the same high of the spectrum windows.
ColibriNANO has LNA gain slider which was set to maximum SNR.

Airspy HF+, on the other hand, has no LNA gain control.
The SV2HQL/Beacon was chosen as a test signal on 3579.32 kHz (on 80m band)

Antenna is half-wave resonant Dipole (40 meters long) for 80m band.

In the second part of the video I was inserted 27 dB external Attenuator on both receivers. ColibriNANO automatically increased the LNA gain and sets itself to maximum SNR. With this amount of attenuation, The Airspy HF+ noise floor level was at about the same place in spectrum window like ColibriNANO, Unlike in the first part of the video, when no external attenuator was used.

Both SDR-receivers are very good! Which is better? I leave on you to judge...

Mile also does a second test with his HF+ and an active Mini-Whip antenna. He writes:

Airspy HF+ is superb High-Dynamic HF and VHF SDR-receiver and I am impressed with it. In order to minimize possible negative effect on signal path from antenna connector to tuner input, Airspy HF+ has no internal attenuator. Developers takes in account that this SDR-receiver has enough dynamic range that is very difficult to overload it. Actually it is true for most cases. But, if we want to use some type of active antenna (with internal amplification) like Mini-Whip Active Antenna for example, it is good idea to add an external attenuator between antenna and receiver HF-input connector, in order to have opportunity to lower the signal level from the active antenna, and to avoid possible overload issues. In this video I am presented some scenario (receiving MW AM band) when my homemade external step-attenuator is more than welcome! By the way, the external step-attenuator is very easy to made in almost no money. All you need is 9 resistors, three switches and one metal box) I have 5.5 dB switch, 10.5 dB switch and 22 dB switch. It can be set for 8 various combinations: 0, -5.5 dB, -10.5 dB, -16 dB, -22 dB, -27.5 dB, -32.5 dB and -38 dB.

You can see on this video that the AM Broadcast signal from Macedonian Radio on 810 kHz is very strong. The Antenna is about 30 km from my house. It is self standing huge 185 meters high vertical antenna, radiating enormous RF-power, so I have to use my homemade attenuator I mentioned it before.

The SWLing Post Blog

Here Thomas of the SWLing post blog has posted a brief review of his HF+ unit. He notes how the HF+ is very compact, with a durable enclosure and how easy it was to set up with it being completely plug and play. So far Thomas hasn't fully evaluated the performance, but his first impressions are good.

Adam 9A4QV

In his two videos Adam doesn't directly review the Airspy HF+, but he does show some pretty impressive reception with his Skyloop antenna.

RadioHobbyist (Update: 8 Dec 2017)

This review by RadioHobbyist just came online shortly after this post went out. It compares the HF+ against the expensive $1449 US NetSDR using sound samples from both radios. The difference between the two radios is almost undetectable.

GR-Con17 Talks: GPS Beamforming with RTL-SDRs, Direction Finding with RTL-SDRs on Android and much more

GRCon17 is the yearly convention all about GNU Radio and the talks are generally all about technical cutting edge developments in the software area of the SDR world. If you didn't already know, GNU Radio is an open source tool that makes implementing digital signal processing code significantly easier by providing a framework and several ready to use DSP blocks. It is an advanced tool used a lot in industry and research, but the visual nature of the blocks means that the basics can be easily learned in a few days. See Micheal Ossmans video tutorials for an excellent introduction.

This year at GRCon17 there were multiple interesting talks, and over the last few days videos of them have been released on YouTube. Slides for each presentation are also available in the YouTube description boxes. The full list of presentations can also be found on the Technical Processing page at GNURadio. A selection of our favorites videos are presented below, with several talks utilizing low cost RTL-SDRs as the core radio in the research.

GPS Beamforming with Low-Cost RTL-SDRs - Wil Myrick

In this talk Wil Myrick discusses how he's been using low cost RTL-SDR dongles to perform beamforming experiments with GPS signals.

Real-Time Direction Finding Using Two Antennas on an Android Phone - Sam Whiting

In this talk Sam Whiting shows how he used two coherent RTL-SDR dongles running on on an Android phone for direction finding. At the end of the video he demonstrates his results.

Hacking the Wireless World 4.0 - Balint Seeber

In this video Balint Seeber continues with his popular Hacking the Wireless World series of talks and this time talks about FMCW & Passive Radar and FPV decoding with SDRs.

Akos Tests the RTL-SDR Blog Multipurpose Dipole Kit

Over on his blog 'Radio For Everyone' Akos has been testing out our multipurpose dipole kit for ADS-B reception. He goes over each of the components in the kit and does some tests with the kit set up outside. His results show that the dipole kit when used with the smaller antennas can compete favorably with the more expensive FlightAware antenna. We note that the dipole antenna is not designed to be used outdoors for extended periods of time as Akos did as they are not weather proofed for rain. The antennas are designed to be used temporarily outside in good weather conditions. Waterproofing could potentially be achieved by oiling the metal, or potting with hot glue etc.

Akos also does a comparison of the dipole used in two configurations. In one configuration the antenna is used in the recommended vertical orientation, and in the other position in a bunny ears configuration. Antenna theory says that the vertical orientation will work best as ADS-B signals are vertically polarized, and the results confirm that that is true.

FlightAware Antenna vs Dipole
Akos' Results: FlightAware Antenna vs Dipole

The Open Source OVI-40 SDR Transceiver

Thanks to various contributors for letting us know about the OVI-40, a new open source DIY SDR ham radio transceiver project that is now available for ordering. The OVI-40 appears to be a German project that is based on the mcHF transceiver. It is a standalone SDR transceiver (no PC required) with a frequency range of DC - 75 MHz. Most discussion appears to be happening in German on their forums, so it is a little difficult to get English information about it.

The kit has recently been released for preorder. The transceiver is a kit involving SMD soldering, but can be ordered fully soldered for 202 Euros (~$240 US) + taxes. The LCD screen is an additional 24 - 27 Euros. The kit without soldering done costs 112 Euros (~$132 US) + taxes.

The advertised details and specs are listed below:

OVI40-SDR is a transceiver which covers VLF...75MHz. It is mainly a DIY project - but all PCBs will also be available as soldered, aligned / programmed PCBs for all those, who do not have the skill to build a complex SMD project by themself or do not want it. OVI40-SDR will also be available as "only RX" and can be expanded with TX stages later.

Developer team takes inspirations from all existing commercial and DIY projects to get a SDR which combines possibly the best of all of them. But OVI40-SDR is not only a TRX - it is a philosophy. A community based working together, regardless of different countries, languages, religions, political systems - all are working together to get a very nice transceiver for themselfes and for others who are coming to the project later - wants to show, what people can reach if they are working together and do not struggle against each other. HAM radio always has connected the world - using the possibilities of the internet adds much more power for community working.

  • RX from VLF (~ a few KHz) ... 4m, possibly 2m Including
  • TX 160m ... 4m: 50W, 2200m, 630m and 4m (2m if Implemented): 10 ... 20mW SMA Out
  • continuosly tuned preselection
  • PA works using double LDMOSFET, independent BIAS adjusted. BIAS is internally Measured via A / D and can be set in menu Directly in [mA].
  • TX and RX mixer with very low capacity to minimize LO leakage
  • true RX QSD mixer using instrumental amplifiers
  • all internal Voltages (8V, 5V) are generated using well-shielded switching regulators. Additionally switching frequency is shifted via firmware so that never harmonics are present in the RX spectrum
  • included hardware for measuring antenna (sweep) using logarithmic amplifier
  • output of an independent selectable rf to SMA plug. I am experimenting to use this as a beacon WSPR Which can run parallel to radio
  • usage as possible network analyzer
The OVI-40 Kit Assembled
The OVI-40 Kit Assembled

RFSim99 for Modern Windows Versions: Free RF Simulation Tool

RFSim99 is an old but still very useful piece of free software for designing and simulating RF circuits such as filters, attenuators, matching circuits, RF components with S-parameters and so on. It is not a high end tool, but is more than good enough for hobbyist and ham level designs.

One issue up until recently with RFSim99 was that it was so old that it would only run on Windows XP computers. To run on a modern PC you needed to use a virtual machine, or the Windows built in XP emulation, which was only available on Professional/Ultimate Windows versions and has since been discontinued in Windows 10.

However, we have just found AD5GG's blog where earlier in the year he posted a standalone version that actually works in modern Windows versions (7, 8, 10) without the need for any virtual machines.

RFSim99 is fairly simple to learn. Just place down two measurement ports (in/out) and lay down your RF components on the grid. Then connect them up with a wire and place grounds. Click on the simulate button to see a graph of the response and return loss. There are even built in calculators in the Tools menu which can automatically design and simulate filters for you.

Designing a simple filter in RFSim99
Designing a simple filter in RFSim99

XTRX SDR Campaign Now Live: Mini PCIE Based TX/RX SDR for $199

Back in early November we posted about the upcoming XTRX SDR, which is a small form factor 2 x 2 MIMO TX and RX capable SDR that is designed to fit into laptop Mini PCIE card slots. It is based on the LimeSDR RF chips, and has a tuning range of 10 MHz - 3.7 GHz, with a sample rate of up to 120 MSPS. It is also has some interesting additional features such as a built in GPSDO and an onboard FPGA which can be used to accelerate DSP tasks as well. The Mini PCIE interface was chosen for it's low latency transfer rates.

The card is designed for use cases such as creating LTE cellular networks, creating software defined 2G/3G/4G modems and using on board drones and in embedded systems. It can also be used for standard wideband monitoring and of course any other SDR applications compatible with Lime chips.

Today the crowdfunding campaign for the XTRX has begun. The early bird pricing is $179 USD (with 71 left at the time of this post - going down fast!), and the regular price is $199 USD. There are accessories available as well such as antenna and cable kits, a PCIe x2 adapter and a USB 3.0 adapter kit with enclosure. The XTRX team are hoping to raise 90k USD, with already 8k USD having been raised at the time of this post.

The XTRX Board
The XTRX Board