Search results for: android

SDRangel Now Available on Android: Mobile ADS-B, AIS, APT, Digital Voice, POCSAG, APRS, RS41 Radiosonde Decoders

SDRangel is a free open source software defined radio program that is compatible with many SDRs, including RTL-SDRs. SDRAngel is set apart from other programs because of it's huge swath of built in demodulators and decoders.

Thank you to reader Jon for writing in and noting that SDRangel has recently been released for Android as a free Google Play download. This is an amazing development that could open up many doors into portable decoding setups as the Android version supports almost every decoder implemented on the desktop version. Jon writes:

It includes most of the functionality of the desktop version of SDRangel, including:

  • AM, FM, SSB, Broadcast FM and DAB, AIS, ADS-B, Digital Voice (DMR, dPMR, D-Star, FreeDV), Video (DVB-S, DVB-S2, NTSC, PAL), VOR, LoRa, M17, Packet (AX.25), Pager (POCSAG), Radiosonde (RS41), Time signal (MSF, DCF77, TDF and WWVB) modems.
  • RTL SDR, Airspy, Airspy HF, LimeSDR, HackRF and SDRplay support via USB OTG as well as networked SDRs
  • 2D and 3D signal analysis in both time and frequency domain with statistical measurements of SNR, THD, THD+N, SINAD, SFDR and channel power
  • Satellite tracker, star tracker, maps and rotator controller

It should work on Android 6 and up. It’s a straight port of the desktop application, so although it will run on a phone, probably best used on a large tablet with a stylus or mouse.

SDRangel on Android
SDRangel on Android

ADS-B Radar Android App Updated with Open Street Maps

Thank you to James Mainwaring for letting us know about the latest update to his "ADS-B Radar (RTL-SDR)" Android App. The update brings an Open Street Map (OSM) display, allowing for aircraft to be directly plotted on the map.

As before the app works with an RTL-SDR directly connected to the Android device, and also has a radar like display.

James also has other apps on the Google Play store for FM Radio, Airband and Ham Radio listening.

ADS-B Radar App for Android

Open Source Military TAK Android App Supports RTL-SDR ADS-B Tracking

ATAK (Android Tactical Assault Kit) is an Android app used by some branches of the US military for visualizing geospatial information such as enemy and friendly positions, as well as any other information of interest. The civilian version of ATAK (CivTAK) was recently open sourced in 2020 and can be downloaded from the Google Play Store.

The software has a huge number of features for coordinating teams, planning operations and visualizing information. It can even network via handheld, or ham radios or a Meshtastic LoRa network if a central server and internet connection is unavailable. Of note is that their plugin page references the possibility of using a plugin that uses RTL-SDR hardware for ADS-B aircraft tracking. However, it appears that the plugin needs to be purchased from tak.gov. We suspect that in the future there will be more RTL-SDR compatible plugins available.

[First seen on Hackaday]

ATAK on an Android Device

Using an RTL-SDR to Decode Broadcast FM RDS Data on Android

Over on YouTube Double A Labs has posted a new video demonstrating how to use an RTL-SDR and Android device to receive broadcast FM stations, and to decode any associated RDS data. 

In the video Double A uses the SDR Touch Android app and the Advanced RDS function to show the RDS information. He goes on to explain the various pieces of information RDS data provides including clock time, active RDS groups and alternative frequencies.

Tune broadcast FM radio and decode Radio Data System (RDS) information using your Android phone and an RTL-SDR USB (see parts list below). RDS can include station identification, song name, the current time for a receiver to sync its clock, alternative frequencies the same program is on, and more!

Tuning FM Radio & Decoding RDS Data on ANDROID using RTL-SDR USB

SignalsEverywhere: Review of SDR++ on Android

In our last post we mentioned that a 'pre-release' public version of SDR++ for Android was recently released. Now over on the SignalsEverywhere YouTube channel Sarah has uploaded a new video where she reviews and demonstrates the new SDR++ Android App. 

In the video Sarah demonstrates how to connect and start a SDR, shows SDR++ in action, then tests listening to NOAA weather audio reports, Inmarsat reception via the bias tee support, P25 and broadcast FM. She also shows how it's possible to use the split screen multitasking feature on Android to send audio from SDR++ into APRSdroid for APRS decoding.

She goes on to show how to fine tune the screen PPI resolution for different sized devices, and how to set up multi-VFO listening on the HF bands. Next, she compares the audio decoding quality between SDR++, SDRTouch and RFAnalyzer. Finally she shows that a HackRF running at a wideband 20 MHz of bandwidth can run smoothly. 

The Android SDR App That Beats Them All! Supports RTL-SDR Airspy HackRF and Many More!

SDR++ Android App Public Pre-Release Now Available

SDR++ is an open source program compatible with most software defined radios including the RTL-SDR that has been going through rapid development making it now one of the top software choices.

Yesterday a public 'pre-release' Android version of SDR++ was made available for download. The release is announced as a 'pre-release' due to various bugs still existing. However, we note that we have been testing a private release for the past few weeks, and we can say that it is working great most of the time. The Android App replicates most of the desktop experience perfectly, and it operates very smoothly on most modern devices.

The author Alexandre Rouma writes:

I'm happy to release the first public pre-release of SDR++ for android. It's still quite early and has a few bugs and quirks that you might run into:

  • SDR MUST be plugged in before starting SDR++ and you MUST press refresh in the SDR source you're using before pressing play if you first plugged in the SDR or unplugged/replugged, otherwise expect a crash. The USB handling still needs some work.
  • There are still a few UI glitches
  • There is no easy way to select a path for recording or file for playback
  • The audio sink on Android may have higher latency
  • All menus sometimes close when app goes in the background.
  • Resizing the menu and/or waterfall is kinda fiddly, be precise when trying to grab the resize bar!!!
  • At some size menu sizes, the app crashes. If this happens, start in landscape
  • On Samsung devices, the keyboard doesn't always work for some obscure reason...

MINIMUM REQUIREMENTS:

  • Android 9.0
  • OpenGL 2.1

Since phones usually have a high screen resolution, set the DPI scaling in the Display menu or you'll have a hard time using the app.

Current Device/Protocol Support:

  • Airspy
  • Airspy HF+
  • HackRF
  • PlutoSDR (network only)
  • RFspace
  • RTL-SDR
  • RTL-TCP
  • SDR++ Server
  • SpyServer

In any case, I'd love to get some feedback on it, so feel free to try it out and let me know!

Download Here:https://drive.google.com/file/d/1Z2HPG8RQt8QXsznAq85oewb6TI1lKaL3/view?usp=sharing

PS: If you like this work, feel free to support me on Patreon, since putting it on the App Store won't be cheap and I want to make sure it's completely free with no ads!

SDR++ Android App Screenshot. Credit: goscickiw https://github.com/AlexandreRouma/SDRPlusPlus/discussions/703

New HAM FM and ADS-B Radar Android Apps

Thank you to James Mainwaring for submitting news about the release of his two new RTL-SDR compatible Android Apps "Ham FM Radio (RTL-SDR)" and "ADS-B Radar (RTL-SDR)". 

The Ham FM Radio app allows the user to quickly tune and listen in to the 144-148, 150-174 and 420-450 MHz ham radio communications via presets. For the second ADS-B app, James notes that it's an early release for feedback. It allows the user to receive ADS-B data and plot it on a radar like display.

We note that we've previously posted about James' other apps for FM Radio and airband listening.

The Ham RF and ADS-B Radar Apps by James Mainwaring

Real-Time Radio Spectrum Map Database Demo with RTL-SDR and Android

Over on YouTube Dr. Diep N. Nguyen has posted a video showing work done to create a Real Time spectrum database by his team at University of Technology Sydney. The project involves the use of multiple RTL-SDR dongles and Android mobile devices to monitor the spectrum and make it accessible to requestors in real time. They write:

In view of the escalating demand for higher mobile data (from IoT, industry 4.0 applications), there is a growing world-wide interest to improve the radio spectrum utilization. Effective management of the wireless spectrum requires knowledge of the available bandwidth at any given time and location, which necessitates expensive recording equipment and labour cost at various locations. A number of countries, including the USA, are opening up TV and radar bands for sharing with other applications. Google has taken the lead by opening its spectrum database for TV whitespaces. Our solution goes beyond the state-of-the-art Google spectrum database by providing the world’s first real-time radio spectrum database.

Radio Spectrum Database at UTS
The UTS’s Global Big Data Technologies Centre team has developed advanced sensing capability to deliver a low-cost, yet more robust radio spectrum database. By leveraging big data science, edge computing power, crowdsourcing, and low-cost SDR (software defined radio) adaptors, a real-time snapshot of the wireless spectrum can be recorded on any Android device. The spectrum data is aggregated and visualize onto a web dashboard, allowing industry stakeholders and regulators to better facilitate dynamic radio spectrum monitoring and sharing.

Highlights:

• World’s first real-time spectrum database
• Fast deployment and can cover a wide range of frequency
• Provide spectrum on-demand to IoT, industry 4.0 applications
• Rich datasets from millions of mobile users across various locations
• 24/7 cost-effective and real-time radio spectrum monitoring system
• Economical: $20 RTL-SDR adaptors and labor-free versus costly sensing equipment
• Scalable: Cloud deployment allows infrastructure to be scaled as user base grows (millions of users)
• Easy to use and install via Android Play Store
• User-friendly interface with Google Map embedded system

In the past we've seen somewhat similar projects with Electrosense, and the 'BigWhoop' project.

Real-time Radio Spectrum Map Database Demo