Search results for: job geheniau

Job’s Radio Telescope: Hydrogen Line Northern Sky Survey with RTL-SDR

We've posted about Job Geheniau's RTL-SDR radio telescope a few times in the past [1] [2] [3], and every time his results improve. This time is no exception as he's created his highest resolution radio image of the Milky Way to date. We have uploaded his PDF file explaining the project here.

Job used the same hardware as his previous measurements, a 1.5 meter dish, with 2x LNA's, a band pass filter and an RTL-SDR. Over 72 days he used the drift scan technique to collect data in 5 degree increments. The result is a map of our Milky Way galaxy at the neutral Hydrogen frequency of 1420.405 MHz.

JRT - Northern sky Hydrogen Line Survey with RTL-SDR

This image is quite comparable to an image shown in a previous post which was created by Marcus Leech from CCERA who used a 1.8m dish and Airspy.

If you're interested in exploring our Galaxy with an RTL-SDR via Hydrogen Line reception, we have a simple tutorial available here. The ideas presented in the tutorial could be adapted to create an image similar to the above, although with lower resolution.

Imaging the Cassiopeia A Supernova Remnant with an RTL-SDR and Amateur Radio Telescope

Just a few days ago we posted about Job Geheniau's success at radio imaging the Cygnus-X star forming region at 1424 MHz with a 1.9m radio telescope, an RTL-SDR and some additional filtering and LNAs.

Now in his latest post on Facebook Geneniau has also shown that he has successfully imaged Cassiopeia A with the same equipment. Cassiopeia A is a supernova remnant known for being the "brightest extrasolar radio source in the sky at frequencies above 1 GHz" [Wikipedia]. Geheniau writes:

A new observation from JRT. These are driftscans of Cassiopeia A to make a radio plot. Several driftscans are made last week and combined. Always nice to see whats possible with a 1.5-1.9 meter dish. 2 LNA's and a bandpass filter, connected to a RTL-SDR at 1424 MHz. Happy that I got Cygnus complex and now Cassiopeia A which is the second radio source which is possible to receive with this dish.

The dish is fully remote controlled 50 km away.

Job Geheniau - The Netherlands

Cassiopeia A Radio Imaged with an RTL-SDR and 1.9m dish
Job's Radio Telescope

Imaging the Cygnus Star Forming Region with an RTL-SDR and Amateur Radio Telescope

Over on Facebook Job Geheniau has posted results from his latest radio astronomy experiment which involves imaging the Cygnus-X star forming region at 1424 MHz with a 1.9m radio telescope, an RTL-SDR and some additional filtering and LNAs. In the past we've posted about Geheniau's previous work which involved imaging the entire Milky Way at 1420 MHz, and measuring the basis for the dark matter hypothesis with a similar process and the same equipment. His latest post reads:

Cygnus-X is a massive star-forming region in the constellation Cygnus at a distance of 1.4 kiloparsecs (4600 light-years) from the Sun.

Cygnus-X has a size of 200 parsecs and contains the largest number of massive protostars and the largest stellar association within 2 kiloparsecs of the Sun. Cyg X is also associated with one of the largest molecular clouds known, with a mass of 3 million solar masses.
[Wikipedia]

The idea:
To take a radio picture of the Cygnus complex (Cygnus A + Cygnus X) with my 1.9 meter radio telescope.
Equipment:
1.5 - 1.9 meter radio telescope
Mini Circuits LNA ZX60-ULN33+
Bandpass filter 1200-1700 MHz
2nd LNA
RTL-SDR
VirgoSoft

Implementation:
Multiple 4-hour drift scans of the Cygnus complex and beyond.
In order not to be affected by HI at 1420 MHz, measurements were made at 1424 MHz. At this frequency there is Synchrotron radiation and no neutral hydrogen emission.
To be sure that no Milky Way synchrotron radiation is measured there would be no or hardly any measurable power change outside the Cygnus complex during the drift scan. This was also observed in these measurements and also confirmed earlier in test measurements.

A total of 7 drift scans of 4 hours were made at 1424 MHz. Because the start of the driftscan generates a lot of wrong data (the 'cooling down/warming up' of the RTL-SDR), this has been removed in the measurements.
The measurement starts at 2000 seconds and is always aborted at 12000 seconds in post-processing.

7 shots from RA 19 to RA 22. The declination varied each observation from DEC 36 to 43 degrees.

Because not every driftscan was perfect (heavy clouds gave worse results anyway as well as wind/rain or rfi) a total of 15 measurements were done, of which 7 were thus acceptable enough for editing.

In the end JRT performed measurements from 24 September to 9 October. Patience is a good thing.

Results:
By editing the driftscan data in Excel with Conditional Format (giving color to the data) the final result is a 'radio photo' of the complex.

Of course, in view of the dish diameter, the beam is 8 degrees and thus a somewhat rough image of the Cygnus complex is sketched here.

Job Geheniau - Netherlands.

Cygnus-X Imaged at 1424 MHz with an RTL-SDR based home radio telescope.

Using an RTL-SDR to Measure the Basis for the Dark Matter Hypothesis

From calculations depending on the distribution of visible star mass in our galaxy, a certain galactic rotational velocity vs distance from center curve is expected. However, when scientists actually measure the galactic rotation, another curve is found - a curve which should result in the galaxy flying apart. This mismatch in expected vs measured data has given rise to the theory of "dark matter". The theory essentially states that in order to get the measured curve, the galaxy must have more mass, and that this mass must come from non-luminous matter scattered amongst the galaxy which is difficult or impossible to observe.

In the past we have posted about Job Geheniau's radio astronomy projects a few times on this blog. So far he has used an RTL-SDR and radio telescope dish to generate a full radio image of the galaxy at the Hydrogen Line frequency of 1.42 GHz. This project worked by pointing the telescope at one section of the galaxy, measuring the total Hydrogen line power with the RTL-SDR over a number of minutes, then moving the telescope to the next section.

Job's Radio Telescope + Laptop and RTL-SDR Setup

Using the same hardware and techniques to observe the Hydrogen Line frequency, he was now able to measure the rotational curve of our galaxy. When the telescope points to different arms of the galaxy, the Hydrogen line measurement will be doppler shifted differently. The measured doppler shift can be used to figure out the rotational velocity of that particular arm of the galaxy. By measuring the rotational velocity from the center of the galaxy to the outer edges, a curve is created. Job's measured curve matches that seen by professional radio astronomers, confirming the mismatch in expected vs measured data.

Job's document explaining his setup and measurement procedure can be found here (pdf file).

Job's Measured vs Expected Curve

If you'd like to get started with Hydrogen line radio astronomy with an RTL-SDR, we have a tutorial over here.

Imaging the Milky Way in Neutral Hydrogen with an RTL-SDR Part 2

Last month we shared information about Job Geheniau's success with using an RTL-SDR dongle to image our galaxy in neutral Hydrogen. Our galaxy is full of neutral Hydrogen, and lots of neutral Hydrogen together results in a detectable radio peak at 1.42 GHz. This peak is called the Hydrogen line. By scanning the galaxy at the Hydrogen line frequency with a 1.5 meter dish on a motorized mount, an RTL-SDR, and a few filters and LNAs, Job is able to create a radio image of our galaxy.

In Job's previous attempt he created an image by pointing the dish antenna at 168 predefined grids calculated to cover the Milky Way, resulting in 168 points of exposure data. In his latest work Job has created an even higher resolution image by taking 903 points of exposure data. Each exposure took 150s and the total 903 exposures took 8 nights to record. Once all data was collected he uses the same process as before, which is to input all the Hydrogen line data into a standard 2D excel sheet, then use conditional formatting to create a heatmap which reveals the image. He then applies a blur and stretches the image into the Mollweide Cartographic which can represent the entire Universe in one image.

Job has shared with us his PDF where he documented his process and shares his images (note 16 MB PDF file). We also share his full resolution images below, just click to open. We think that these images are quite amazing and an excellent achievement for a backyard radio astronomer.

If you're interested in Hydrogen line radio astronomy we have a tutorial that will help you observe the Hydrogen line peak on a budget. The tutorial could be improved upon by motorizing the dish, allowing you to create images like the ones above. You might also be interested in a similar project by Marcus Leech who took 5 months of hydrogen line observations with an RTL-SDR in order to create an even higher resolution image.

Imaging the Milky Way in Neutral Hydrogen with an RTL-SDR

Over on Facebook Job Geheniau has recently been sharing how he's taken an image of our galaxy (the Milky Way) with a radio telescope consisting of a 1.5 meter dish, RTL-SDR and a few filters and LNAs. In the past we've posted several times about others observing the Hydrogen line with an RTL-SDR, and we have a tutorial here showing how to observe it on a budget.

In this case, Job went a step further than just a single measurement. He used a used a motorized dish and RTL-SDR to scan the entire Milky Way over one month, resulting in a full radio image of the galaxy. As his posts and pdf document are on Facebook and not visible to those without Facebook accounts, we asked for permission to reproduce some of them here for all to see. We have also mirrored his PDF file here, which contains more information about his radio telescope, results and setup.

To make a very long story short. After a month of angel patience (and that says something to me) I managed to take a 'picture' of our entire galaxy (galaxy) in neutral hydrogen! I attach some pictures. If you are more interested, please come after this and PDF with explanation. It was a hell of a job I can tell you. But here's the ' picture s' of the house (230 million light years wide) in which we live and in which we all have a big mouth......

Hydrogen Line Image of the Milky Way produced by Job Geheniau
Hydrogen Line Image of the Milky Way produced by Job Geheniau

For the Scientists among us... a beautiful plot of the Milky Way Graphically explained in neutral hydrogen....... In short, summarized... if you look up on a beautiful summer evening you will see a beautiful galaxy, this is graphically the same but then on a different frequency than the eye can perceive. own dates of course.....

A composite of Hydrogen Line readings at different points of the Milky Way
A composite of Hydrogen Line readings at different points of the Milky Way produced by Job Geheniau
An image of the Galactic Plane (longitude 20 to 240 steps of 5 degrees and latitude 0)
An image of the Galactic Plane (longitude 20 to 240 steps of 5 degrees and latitude 0)

His setup consists of a 1.5m dish, extended to 1.9m with some mesh. A 1420 MHz tuned feed, Mini Circuits ZX6-P33ULN LNA, Bandpass Filter, NooElec SAWBird LNA, Bias-T, RTL-SDR V3, PST Rotator Dish Software, VIRGO software, SDR#, Cartes due Ciel sky chart and a home made netfilter.

He uses a modified version of the VIRGO software to read sky coordinates from a text file, and this points the telescope at each predefined coordinate. He then uses VIRGO to record data for 180 seconds before moving on to the next coordinate. The data is then plotted in Excel, and the highest peak is taken at each coordinate and put back into an 8x21 matrix in excel. Conditional formatting is then used to generate a color gradient resulting in a rough map. Then a Gaussian blur is applied, and it is projected over the Galaxy, resulting in the images above.

Job Geheniau's Radio Telescope Setup
Job Geheniau's Radio Telescope Setup

In the past we've seen a very similar project performed by Marcus Leech from ccera.ca. However, his measurements use 5 months of observations resulting in much higher resolution data.

The Hydrogen Line is an observable increase in RF power at 1420.4058 MHz created by Hydrogen atoms. It is most easily detected by pointing a directional antenna towards the Milky Way as there are many more hydrogen atoms in our own galaxy. This effect can be used to measure the shape and other properties of our own galaxy.