Search results for: sorcerer

A Review of the KiwiSDR: 10 kHz – 30 MHz Wideband Network SDR

The KiwiSDR is a 14-bit wideband RX only HF software defined radio created by John Seamons (ZL/KF6VO) which has up to 32 MHz of bandwidth, so it can receive the entire 10 kHz – 30 MHz VLF/LF/MW/HF spectrum all at once. However, it is not a typical SDR as you do not connect the KiwiSDR directly to your PC. Instead the KiwiSDR is a cape (add on board) for the Beaglebone single board computing platform. If you’re unfamiliar with the Beaglebone, it is a small computing board that is similar to a Raspberry Pi. The KiwiSDR is designed to be a low cost standalone unit that runs 24/7, connects to your HF antenna and internet network, and shares your 10 kHz – 30 MHz reception over the internet with up to 4 simultaneous users.

The KiwiSDR
The KiwiSDR

The KiwiSDR kit retails for $299 USD (Amazon) (Direct from Seeed Studio), and with that price you get the KiwiSDR cape, a Beaglebone Green board, an enclosure, microSD card and a GPS antenna. If you already have a Beaglebone lying around, then you can purchase the KiwiSDR board only for $199 USD. 

Because the KiwiSDR is a network SDR, instead of connecting it to your PC it connects to your home internet network, allowing you to access it from any computing device via a web browser. Direct access to the SDR is not possible (actually it seems that it is, but it’s not easy to do), and all the computing is performed on the KiwiSDR’s on board FPGA and Beaglebone’s CPU before being sent to the network. Thus raw ADC or IQ data is never touched by your PC, your PC only sees the compressed audio and waterfall stream. So a powerful computer is not required to run the SDR. In fact, a mobile phone or tablet will do just fine.

In comparison, a $299 USD wideband non-networked SDR such as the LimeSDR uses a 12-bit ADC and can do up to 80 MHz of bandwidth over USB 3.0. But even on our relatively powerful PC (i7-6700 CPU, Geforce GTX 970 and 32 GB RAM) the LimeSDR can only get up to about 65 MHz on SDR-Console V3 before performance becomes too choppy.

But the real reason to purchase a KiwiSDR is that it is designed to be shared and accessed over the internet from anywhere in the world. You can connect to over 137 shared KiwiSDRs right now over at sdr.hu which is a site that indexes public KiwiSDRs. To achieve internet sharing, the KiwiSDR runs a modified version of András Retzler’s OpenWebRX software. OpenWebRX is similar to WebSDR, but is open source and freely available to download online. The standard OpenWebRX is also designed to support the RTL-SDR. Of course if you don’t want to share your receiver over the internet you don’t have to, and you could use it on your own local network only.

Some applications of the KiwiSDR might include things like: setting up a remote receiver in a good noise free location, helping hams give themselves propagation reports by accessing a remote KiwiSDR while they are TXing, listening to shortwave stations, monitoring WSPR or WEFAX channels, education, crowd sourced science experiments and more.

Continue reading

Decoding the Russian Parus (Cosmos) Navigation Satellites with the RTL-SDR

Once again Happysat, who previously wrote in to RTL-SDR.com to let us know how to receive dead satellites with the RTL-SDR has again written in to let us know about his latest achievements.

Happysat has recently been using a RTL-SDR to decode the discontinued Russian Parus (Cosmos) Navigation Satellites. These are low earth orbit satellites operated by the Russian Space Forces that are used for military communication and navigation. Since 1974 there have been 99 Parus satellites launched, but there are only three currently active.

With an RTL-SDR, SDR# and decoder software, Happysat was able to decode data from the satellite which includes the current Moscow time and various location and telemetry data.

Russian Parus (Cosmos) Satellite Decoded Data
Russian Parus (Cosmos) Satellite Decoded Data

Happysat writes:

The Russian Military Parus satellites are/where used for low-earth orbiting navigation information and store-dump radio communications relay service for Red Navy surface vessels and submarines.

Each satellite is in a near-circular orbit of about 1000 km (620 miles).The orbits are polar (pass over the poles of the earth) and stay stationary in space so that as the earth rotates, the satellite covers different parts of the planet.

There are three currently operational, Cosmos 2407, 2414, and the last one launched in this series (April 2012) Cosmos 2463 with a lifespan of 4 years.

They are discontinued now as the GLONASS Navigation systems did take over the service which are providing a better accurate GPS position.

Why the Parus-Satellites are currently still broadcasting data is unknown. Most probably due the older vessels and submarines are still using Shkhuna Radio systems.

The satellites transmit two radio carriers, one on VHF which is FM modulated with the navigational data around 10 watts, and one on UHF which is unmodulated (tracking Beacon).

Already in 1980 the British Kettering Group was able to decode the encryption. The first 18 Bit of data contain the Moscow time, the other Bits contain the positions and orbits from the other active Parus-Satellites. Very similar data like our GPS output and the Orbcomm satellites (on 137 Mhz) with OrbcommPlotter (explained also on rtl-sdr).

With RTL-SDR and SDRSharp its possible also to decode the Russian Military Parus satellites.

Alan Cordwell did write a Java decoder that will decode the navigation data from the VHF transmission in non-real time. cosmos_export.rar [Mirror] It is experimental software and very basic.

Unfortunately his website is offline but still on web-archive (link to web archive)

You will need to record the audio from the satellite and save it as a 44100, 8-bit, mono .wav file. Which means SDRSharp included wave recording is not suitable to do this you need a external program like Audacity or any favourite which can handle the requirements above.

Then you will need to apply narrow bandpass filtering to it at 3, 5 and 7 kHz. Without this filtering step only a small portion of the data will be available, i’m still struggling with this step 😉

He did use Cool Edit Pro to do this, there are no doubt other apps available like Audacity. Included is a sample filtered audio file for you to try it with, it’s in the rar archive as well.

Unpack the archive to a convenient location a folder called cosmos-export will result. Execute the file cosdec.jar to run the application. Open a file with file/open and in the file chooser dialog select the wav file. To decode it go to Actions/Process File.

To write all output to a log file: check the Dump to log option in File menu (log file will be created with same name as audio file but with .log extension appended). Datascope does as it suggests; it launches a little frame that shows (using graphics) the waveform of the data recovered from the audio. The frequency axis is upside down! you’ll see the 3, 5 and 7kHz bits with 7 at the bottom.

There is another program (Sorcerer) which can decode in real-time only, the current actual atom Moscow time from the satellites.

[sorcer download]

Start sorcerer and go to the menu add decoder on the left FSK and choose COSMOS NAVDATA. Move the first bar slider in the spectrum to 3 kHz so the second and third are on 5 and 7 KHz as seen in the screenshot.

Its possible to run this application and record audio at the same time which is later on needed for the cosmos_export Java program.

The frequencies are as follows:

Cosmos 2407 and 2414
VHF Frequency NavData 149.970 MHz, Tracking Beacon 399.920MHz

Cosmos 2463
VHF Frequency NavData 149.940 MHz Tracking Beacon 399.840MHz

Orbital parameters and predictions:

You need to run Orbitron in SDRSharp to take care of the Doppler!

TLE’s for the current satellites, (these are current as of 10th November 2014)

COSMOS 2407
1 28380U 04028A   14313.17698750  .00000073  00000-0  59418-4 0  2927
2 28380  82.9601 332.2565 0038129 220.5020 139.3308 13.75978622517201

COSMOS 2414
1 28521U 05002A   14314.08629907  .00000094  00000-0  65641-4 0  6502
2 28521  82.9510   6.9860 0040501 164.6577 195.5838 13.87513505496523

COSMOS 2463
1 36519U 10017A   14313.57202739 -.00000009  00000-0 -27079-4 0  4041
2 36519  82.9553 122.2841 0036820   7.8477 352.3245 13.71357663227175

New ones can be downloaded at celestrak: musson.txt

Good luck and if anyone has good knowledge on how to apply narrow bandpass filtering at 3, 5 and 7 kHz, please write in the comments!

Note that Orbitron can be downloaded from http://www.stoff.pl/, and the SDR# plugin to interface with it can be downloaded from SatelliteTracker2.zip or here. A tutorial on using Orbitron with SDR# for Doppler correction can be found on our NOAA Weather satellite reception tutorial.

SDR# with Orbitron for Doppler Correction and Sorcerer for Decoding Cosmos
SDR# with Orbitron for Doppler Correction and Sorcerer for Decoding Cosmos
Image of the Russian Parus  Satellite
Image of the Russian Parus Satellite
Image of the Russian Parus  Satellite
Image of the Russian Parus Satellite
Which option to choose in Sorcerer
Which option to choose in Sorcerer

The BIG List of RTL-SDR Supported Software

There are now dozens of software defined radio packages that support the ultra cheap RTL-SDR. On this page we will attempt to list, categorize and provide a brief overview of each software program. We categorize the programs into general purpose software, single purpose software, research software and software compatible with audio piping.

If you know of a program that is missing please leave a comment in the comments section at the bottom of the page.

13/02/2014 - Added Sodira, gr-wmbus, rtlsdr-waterfall, QTRadio, multimon, sdrangelove, lte-scanner, rtl_tcp, rtl_sdr_FS20_decoder.
17/02/2014 - Updated the Linrad description.
28/04/2014 - Added Modesdeco and Trunk88.
30/05/2014 - Added RTL Panorama, RTL SDR Panoramic Spectrum Analyzer, Chrome Radio Receiver, SeeDeR, DAB Player, RTL SDR Installer, PD/Max Wrapper, SDRWeather, LTR Analyzer, softEOT/softDPU and ScanEyes.
26/07/2014 - Added PiAware, OOK-Decoder, rtl_fm_python, rtl_power heatmap viewer, RTL Bridge, threejs-spectrum, CANFI Software, PNAIS, FLARM Decoder, Xastir, RTLSDR-Airband, SDRTrunk.
13/11/2014 - Added Touchstone, RFAnalyzer, RTL1090 XHSI Interface, Parus Decoder, PlotRTL1090, LRPT Decoder.
05/02/2015 - Added rtl_tool_kit, CubicSDR, OregonWeather, FreqWatch.
15/04/2015 - Added ADSBox, YouSDR, FlightAware Flight Feeder, Frequensea, Track your flight EUROPE, QSpectrumAnalyzer, Doppler & Demod, Redsea, rtl_heatmap, gr-gsm, driveby, SDRecord.
23/12/2015 - Added Remote rtl_udp, AISRec, dump978, AISDeco2, SDRrecorder, OpenWebRX, dsame, RTL-Widespectrum, rtl_ais, rtl_gopow, ham2mon, rtl_ais_android, inmarsatdecoder, spektrum, qtcsdr, rtl_power_fftw, JAERO, GNSS-SDRLIB, SVxLink.
8/09/2017 - Added inspectrum, gr-isdbt, telive, tetra-listener, gr-iridium, SDRuno, luaradio, rx_tools, kukuruku, chronolapse, cloud-sdr, natpos, d3-waterfall, SDRDue, gqrx-ghostbox, ships, rtlmic, tsl-sdr, universal radio hacker, dumpvdl2, re-dected, aerial-tv, questasdr, welle.io, spyserver, dspectrumgui, atcsmonitor, NRSC5 HD Radio Decoder, leandvb, imsi-catcher, block stream receiver, salamandra, deinvert, RS.
6/11/2017 - qradiolink
15/06/18 - Zeus Radio
11/01/19 - SCEPTRE
13/01/20 - VDLM2DEC, Blockstream Satellite, TempestSDR, rtlsdr-wsprd, rtl_map, Radwave, radiosonde_auto_rx, XRIT Decoder, SATNOGS, SigintOS, RadioCapture, EMI_Mapper, xrit-rx (KOMSAT 2A), RTLion, WSJT-X, noaa-apt, rtlSpectrum, fingerprinting_radios_w_ML, mySdrPlayback, QO-100_SSB-WebSDR_DATV-WebSpectrum, goestools, SigDigger, Tekmanoid EGC, Scytale-C, PEPYSCOPE, iridium-toolkit, Electrosense, ORBCOMM-receiver, r2cloud, coole-radar, vor-python-decoder, IridiumLive, radio_analyser, DSDPlusUI, retrogram-rtlsdr, vortrack, rtl_power-fm-multipath, glrpt, Spektrum SV Mod, gammaRF, SegDSP, rtl-ultrasound, radiosondy.info, OP25, RS41 Tool, TETRA Trunk Tracker, meteor_demod, FreqShow, rtl_tcp SDR, PLSDR, SDR Receiver, Echoes, rtlmm, FM2TXT, cnn-rtlsdr, Meteor Logger.

General Purpose RTL-SDR Software

We define general purpose SDR software as programs that allow the RTL-SDR to work like a normal wideband radio receiver.

SDR# (Windows) (Free)

SDR#
SDR#

SDR# (pronounced "SDR Sharp") is the most popular free RTL-SDR compatible software in use at the moment.  It is relatively simple to use compared to other SDR software and has a simple set up procedure. We have a full overview of the installation procedure on our Quick Start Page. SDR# is designed to be use with the $199 Airspy SDR, but works just fine with the RTL-SDR.

SDR# is a simple to use program that also has some advanced features. It has a useful modular plugin type architecture, and many plugins have already been developed by third party developers. The basic SDR# download without any third party plugins includes a standard FFT display and waterfall, a frequency manager, recording plugin and a digital noise reduction plugin. SDR# also decodes RDS signals from broadcast FM.

HDSDR (Windows) (Free)

HDSDR
HDSDR

HDSDR is based on the old WinRAD SDR program. HDSDR supports the RTL-SDR through use of an ExtIO.dll module. To install HDSDR, download the program from the link on the main HDSDR page, then to use the RTL-SDR you will need to download the ExtIO_RTL2832.dll file an place it into the HDSDR folder. When opening HDSDR, select the newly copied ExtIO_RTL2832.dll. The other dlls that come with HDSDR will not work with the RTL-SDR, even though they have RTL-SDR in their filename. The official installation instructions can be found here.

Along with a FFT display and waterfall, HDSDR has some extra advanced features. Users will also find an Audio FFT and waterfall display on the bottom of the screen. The output audio can also be bandpass filtered by dragging the filter borders on the display. Bandpass filtering the audio can really help clean up a noisy signal. The audio processing also supports placing of notch filters either manually or automatically. There are also noise reduction and noise blanker features and an automatic frequency centering algorithm which will automatically center the signal, so you don't need to click exactly in the center of a signal. Traditional ham radio users will also enjoy the S-units signal strength meter and the built in frequency manager.

SDR-RADIO.COM V2/V3 (Windows) (Free)

SDR-RADIO.COM V2
SDR-RADIO.COM V2

SDR-RADIO.COM V2 and the newer V3 is a popular SDR program with many advanced features. As such is it a fair amount more difficult to learn and use compared to SDR# and HDSDR. Be sure you install version 2 and not V1.5 as only V2 has RTL-SDR support.

Once sdr-radio is installed, to get it working with the RTL-SDR you will need to compile or download three .dll files (SDRSourceRTL2832U.dll, rtlsdr.dll and libusb-1.0.dll) and place them into the sdr-radio folder. To compile your own dlls see the instructions here, otherwise download the dlls directly from the bottom of this link. If the dlls were placed in the correct folder you will be able to add your RTL-SDR as a receiver by clicking on the +Definitions button, and then finding and adding the RTL SDR (USB) option under the search drop down menu.

Like HDSDR, not only does sdr-radio have a RF FFT signal and waterfall display, but also an optional audio spectrum FFT and waterfall display. Built in are also several DSP features like a noise blanker, noise reduction filter, notch filter and squelch options. The EMNS noise reduction filter is particularly good at automatically cleaning up and clarifying voice signals.

To add to the feature list, sdr-radio also has built in PSK, RTTY and RDS decoders, and also comes with a satellite tracker. Furthermore, sdr-radio V2 (not V3 yet) has an excellent remote server which will allow you to easily set up and connect to a remote RTL-SDR server over a network or the internet. Finally, sdr-radio is capable of listening to up to 6 signals in the same chunk of visible spectrum at a time.

Continue reading

STANAG 4285 Decoding with RTL-SDR

In this video YouTube user Superphish shows decoding of the French Navy STANAG 4285 test signal. He used an rtl-sdr, Ham-it-up upconverter, SDRSharp and a decoding program called Sorcerer. Watch in HD to read the text, though the text basically just repeats the French equivalent to the quick brown fox, “VOYEZ VOUS LE BRICK GEANT QUE J EXAMINE PRES DU GRAND WHARF” and some test symbols over and over.

Fair warning with the Sorcerer download: Some people report that their virus scanner detects a trojan on some Sorcerer download links. The Sorcerer link above seems to be clean though, as far as my virus scanner reports. An alternative decoder is Sigmira.

STANAG 4285 is the NATO standard for HF communication, and signals can be found all over the HF spectrum.

Stanag 4285 Decoding with RTL-SDR (RTL2832), Sorcerer and SDR Sharp

Radio Signal Identification Guide

NOTE: Recent changes to WordPress seem to have broken the audio on this page. Please use the new Signal Identification Wiki which has many new signals. Anyone can edit and improve the information on the pages on the wiki.

A guide to help you identify some amateur and utility digital radio signals and sounds which you may find on the frequency spectrum. Most of these have been received with an RTL-SDR software defined radio. I will be slowly adding more to this list over time. If you enable stereo mix and pass the sample audio to an appropriate decoding program the sample audio should be decodable for most samples.

If you would like to suggest a modification or contribute a sample, please send a sample, waterfall image and information about the signal to [email protected], or post in the comments. (Note I am currently backlogged with contributed signals, if I haven’t replied or added your signal yet it will be done within a month or two).

More sites with sample audio can be found at this list on dxzone.com. A very nice overview video of the HF spectrum by balint can be found here. There are also two paperback books: Technical Handbook for Radio Monitoring VHF/UHF (PDF Excerpt) & Technical Handbook for Radio Monitoring HF (PDF Excerpt) which have a very comprehensive list, description and images of many signals.

ACARS

Sample Audio:

Typical Frequency: 131.550 MHz

Mode: AM

Bandwidth: 5000-8000 Hz

Description: Aircraft Communications Addressing and Reporting System (ACARS). Short messages sent to and from aircraft.

Decoding Software: PlanePlotter, ACARSD

Video Examples: [1], [2]

ACARS Packets

P25 Phase 1 (C4FM Modulation) (Encrypted)

Sample Audio:

Typical Frequency: ~860 MHz, ~500 MHz + others

Mode: NFM

Bandwidth: 10000 Hz

Description: P25 encrypted digital voice signal with C4FM modulation.

Decoding Software: Digital Speech Decoder (DSD). Note, only unencrypted can be decoded.

Video Examples:  [1], [2][3]

P25 Waterfall Example

DMR/MotoTRBO

Sample Audio:

Typical Frequency: ~860 MHz

Mode: NFM

Bandwidth: 10000 Hz

Description: Motorola digital voice signal known as MotoTRBO (pronouced Moto-Turbo).

Decoding Software: Digital Speech Decoder (DSD). Note, only unencrypted can be decoded.

Video Examples: [1], [2]

DMR/MOTOTRBO Signal Waterfall

POCSAG/FLEX-A

Sample Audio:

Typical Frequency: ~151 MHz, ~900-950 MHz

Mode: NFM

Bandwidth: 10000 Hz

Description: Pager digital signal known as POCSAG. An acronym of Post Office Code Standardization Advisory Group.

Decoding Software: PDW

Video Examples: [1], [2]

 POCSAG/FLEX Pager Waterfall Image

Weather Balloon (Radiosonde) Vaisala RS92SGP

Sample Audio:

Typical Frequency: ~400 MHz

Mode: NFM

Bandwidth: ~5500 Hz

Description: Weather balloon (Radiosonde) telemetry data. Only transmits during a weather balloon launch.

Decoding Software: SondeMonitor

Video Examples: [1], [2]

  RS92SGP Radiosonde Waterfall Image

TETRA Downlink

Sample Audio:

Typical Frequency: 380 – 430 MHz

Mode: –

Bandwidth: 25000 Hz

Description: Terrestrial Trunked Radio (TETRA), also know as Trans-European Trunked Radio is a professional mobile radio and two-way transceiver (walkie-talkie) specification. Modulated with π/4 DQPSK. Audio sample recorded in NFM mode.

Thanks to Jenda for the submission.

Decoding Software: osmocomTETRA

Video Examples: [1], [2]

TETRA Downlink

Trunking Control MPT1327

Sample Audio:

Typical Frequency: ~420 MHz

Mode: NFM

Bandwidth: 10000 Hz

Description: Radio trunking control channel.

Decoding Software: Trunkview, UniTrunker

Video Examples: [1]

MPT1327 Waterfall Image

Trunking Control Motorola Type II Smartnet

Sample Audio:

Typical Frequency: ~860 MHz

Mode: NFM

Bandwidth: 8000 Hz

Description: Radio trunking control channel.

Decoding Software: UniTrunker

Video Examples:

Motoroal 2F1D Trunking Channel

Trunking Control EDACS96

Sample Audio:

Typical Frequency: ~860 MHz

Mode: NFM

Bandwidth: 10000 Hz

Description: Radio trunking control channel.

Decoding Software: UniTrunker

Video Examples:

EDACS96 Trunking Channel

Trunking Control APCO P25

Sample Audio:

Typical Frequency: ~860MHz

Mode: NFM

Bandwidth: 12500 Hz

Description: Radio trunking control channel.

Decoding Software: UniTrunker

Video Examples:

APCO P25 Trunking Channel

AFSK1200

Sample Audio:

Typical Frequency: ~144 MHz

Mode: NFM

Bandwidth: 10000 Hz

Description: Audio frequency-shift keying (AFSK). Used by amateur radio hams for packet radio, Automatic Packet Reporting System (APRS) and telemetry.

Decoding Software: QTMM

Video Examples: [1]

AFSK1200

AIS

Sample Audio:

Typical Frequency:

Marine Channel 87 – 161.975 MHz
Marine Channel 88 – 162.025 MHz

Mode: NFM

Bandwidth: 12500 Hz OR 25000 Hz

Description: Automatic Identification System (AIS). Used by ships to broadcast position and vessel information. Uses 9.6 kbit GMSK modulation.

Decoding Software: ShipPlotter, AISMon (In the Files Section of the Yahoo Group)

Video Examples: [1], [2]

AIS Waterfall

NOAA Weather Satellite (APT)

Sample Audio:

Typical Frequency:

NOAA 15 137.620
NOAA 18 137.9125
NOAA 19 137.100

Mode: WFM

Bandwidth: 30000 Hz

Description: NOAA Automatic Picture Transmission (APT) signal. Used to by the NOAA weather satellites to transmit satellite weather photos.

Only transmits at certain times throughout the day when the satellite passes overhead at your location.

Decoding Software: WXtoImg

Video Examples: [1], [2], [3]

 NOAA APT Waterfall Screenshot

Stereo Wideband FM (WFM)

Sample Audio: –

Typical Frequency:

Common – 87.5 to 108.0 MHz
OIRT – 65 to 74 MHz
Japan – 76 to 90 MHz
Consumer Wireless Devices – ~860 MHz

Mode: WFM

Bandwidth: 30000 Hz

Description: Stereo Wideband FM signal. Used for typical broadcast radio, and in some wireless headsets and speakers. This particular signal is from an AKG headset.

Top signal is WFM transmitted with low amplification. Bottom signal is WFM transmitted with high amplification.

Thanks to Tobby for the submission.

Decoding Software: Unencoded

Video Examples: [1], [2]

 WFM

Amplitude Modulation (AM)

Sample Audio: –

Typical Frequency:

Long wave – 153 to 279 kHz
Medium wave – 531 to 1,611 kHz in ITU regions 1 and 3 and 540 to 1610 kHz in ITU region 2.
Short wave – 2.3 to 26.1 MHz

Aircraft – 108 to 137 MHz

Mode: AM

Bandwidth: 10000 Hz

Description: Amplitude Modulation broadcast audio radio station.

Thanks to rtlsdr_is_fun for the submission.

Decoding Software: Unencoded

Video Examples: [1], [2]

 AM Waterfall

Weatherfax (HFFAX)

Sample Audio:

Typical Frequency: HF ~3 to 16 KHz. Location dependant.

Mode: Upper side band (USB)

Bandwidth: ~1900 KHz

Description: HF Weatherfax. Used by boats for weather reports. Also Kyodo News, a Japanese newspaper transmits entire pages via HFFAX.

Decoding Software: FLDIGI

Video Examples: [1], [2]

 WeatherfaxWaterfall

Upper Side Band Voice (USB)

Sample Audio:

Typical Frequency: All HF band.

Mode: USB

Bandwidth: ~1900 Hz

Description: Single side band, specifically upper side band. Used in the HF band by amateur radio hams and aircraft weather reports. Single side band saves bandwidth.

Decoding Software: Unecoded

Video Examples: [1], [2]

 UpperSideBandWaterfall

Over the Horizon (OTH) Radar

Sample Audio:

Typical Frequency: All over HF Band

Mode: –

Bandwidth: 

Description: Over the horizon radar. Used by governments for very long range radar systems.

Decoding Software: Unencoded

 OTHRadar

Analogue PAL TV

Sample Audio:

Typical Frequency: Multiple

Mode: PAL TV

Bandwidth: 5 MHz

Description: Analogue PAL TV. Color TV signal.

Decoding Software: TVSharp

Video Examples: [1]

 Analogue PAL TV

Digital Audio Broadcast (DAB+)

Sample Audio: No Audible Sound Produced

Typical Frequency: 

Multiple channels.
Block 13F – 239.200 MHz

Mode: DAB

Bandwidth: 1,537 KHz

Description: Digital Audio Broadcast (DAB+). A type of digital broadcast radio signal, containing multiple digital radio stations in the signal.

Decoding Software: SDR-J

Video Examples: [1]

 DAB+ Digital Audio Broadcast

Baby Monitor (NFM)

Sample Audio: –

Typical Frequency: ~40 MHz, 49.5 – 50 MHz

Mode: NFM

Bandwidth: < 15 KHz

Description: NFM signal from a baby monitor. Periodically bursts signal when no audio is detected. Thanks to Dean for some extra info.

Decoding Software: Unencoded

Video Examples: [1]

 BabyMonitorNFMSpikes

Digital Radio Mondiale (DRM)

Sample Audio:

Typical Frequency: Below 30 MHz on HF, near other shortwave radio stations.

Mode: USB

Bandwidth: 10000 Hz

Description: Digital Radio Mondiale (DRM). A form of international digital shortwave radio. Replaces AM shortwave radio.

Thanks to Will P. for the contribution.

Decoding Software: DREAM, SODIRA

Video Examples: [1], [2]

 Digital Radio Monodiale Waterfall Digital Radio Monodiale Waterfall

STANAG 4285

Sample Audio:

Typical Frequency: All over HF.

Mode: USB

Bandwidth: 2500 Hz

Description: Standardization Agreement (STANAG) 4285. NATO standard for HF communication.

Decoding Software: Sorcerer (Waring: Potential Virus Alert), Sigmira

Video Examples: [1]

 STANAG 4285 Waterfall Example

GSM Downlink (Non-Hopping)

Sample Audio:

Typical Frequency: 900 MHz and 1800 MHz Band OR 850 MHz and 1900 MHz Band

Mode: –

Bandwidth: 200 KHz

Description: GSM Cell Phone Downlink (Non Hopping Signal). Audio sample used NFM mode.

Decoding Software: Airprobe

 GSM Non Hopping Waterfall Image

GSM Uplink

Sample Audio: No Audible Sound Produced.

Typical Frequency: ~890 MHz

Mode: –

Bandwidth: 200 KHz

Description: Initial connection GSM signal sent from a cellphone.

Decoding Software: 

 GSMUplinkFrequencyHopping

GSM Downlink (Hopping)

Sample Audio: No Audible Sound Produced

Typical Frequency: 900 MHz and 1800 MHz Band OR 850 MHz and 1900 MHz Band

Mode: –

Bandwidth: Each channel 200 KHz

Description: GSM cell phone hopping.

Decoding Software: 

 GSM Hopping Waterfall

“Japanese Slot Machine” (XSL)

Sample Audio:

Typical Frequency: Between 4 MHz and 9 MHz

Mode: USB?

Bandwidth:

Description: Known as the Japanese Slot Machine. Thought to be data originating from the Japanese Navy.

Decoding Software: Sigmira (But Cannot Decrypt)

Video Examples: [1], [2]

 Japanese Slot Machine Waterfall

Automatic Dependent Surveillance-Broadcast (ADS-B)

Sample Audio: No Audible Sound Produced

Typical Frequency: 1090 MHz

Mode: –

Bandwidth: 2 MHz

Description: Automatic Dependent Surveillance-Broadcast (ADS-B). Used by aircraft to broadcast their latitude, longitude and altitude.

Decoding Software: ADSB#, Dump1090, RTL1090

Video Examples: [1], [2], [3]

 ADSBWaterfallScreenShot

Cuban Numbers Station HM01

Sample Audio: 

Typical Frequency: 11.530 MHz.

Mode: AM

Bandwidth:

Description: (Previously Unidentified Signal 5). Numbers stations are thought to transmit encoded information for various spy agencies around the world. They are recognized by a voice reading a sequence of numbers or words. This is a Cuban Numbers Station which has a data portion and a voice portion. Sound sample recorded in AM mode.

Thanks to Andrew from the comments section for the ID.

Decoding Software: Information Here

Video Examples: [1], [2], [3], [4], [5]

UnknownSignalWaterfall_5

High Frequency Data Link (HFDL)

Sample Audio: 

Typical Frequency:  HF Band

Mode: USB (1440 Hz below center)

Bandwidth: ~2800 Hz

Description:  (Previously Unidentified Signal 2). An Aircraft Communications Addressing and Reporting System (ACARS) data link that aircraft use to communicate short messages over long distances using HF signals.

Thanks to Andrew from the comments section for the ID.

Decoding Software: PC-HFDL

Video Examples: [1], [2], [3]

UnknownSignalWaterfall_1

Binary Phase Shift Keying (BPSK31)

Sample Audio: 

Typical Frequency:  HF Amateur Band

Mode: SSB

Bandwidth: ~31 Hz

Description:  A digital amateur radio mode based on Phase Shift Keying (PSK) modulation

Thanks to Patrick for the submission.

Decoding Software: Fldigi, MixW, HRD Digital Master 780, MultiPSK

Video Examples: [1], [2][3]

BPSK Waterfall Example

AFSK Paging Link

Sample Audio: 

Typical Frequency: 72-76 MHz

Description: (Previously unidentified signal 10). Identified in the comments section by Ronen as an Asynchronous Frequency Shift Keying (AFSK) pager link. It is easier to transmit the FSK pager signal to the transmitter site as AFSK.

unknown_10_waterfall

Pulse Code Modulated (PCM) RC Toy Signal

Sample Audio: 

Typical Frequency: 27.145 MHz, 72 MHz

Description: (Previously unidentified signal 9). Identified in the comments section by W1BMW as a Pulse-code modulated (PCM) signal used for remote control (RC) Toys. Link to IQ file http://i.nyx.cz/files/00/00/09/99/999880_c640d91142db39ee7d57.zip?name=SDRSharp_20130613_113322Z_27186kHz_IQ.zip. Sample audio recorded in USB mode.

UnknownSigna_9

Overlapping RTTY Signals

Sample Audio: 

Typical Frequency: HF band

Description: Previously unidentified signal (11). Identified in the comments by various contributors as multiple overlapping RTTY signals sent by ham radios.

Unknown CW #3

Voice Frequency Telegraph

Sample Audio: 

Typical Frequency: 7453.50 KHz USB

Description: Previously unidentified signal (13). VFT or Voice Frequency Telegraph is one of several systems for sending multiple RTTY signals over one voice-bandwidth radio channel.

74535khzusb

Portable Traffic Lights

Sample Audio: 

Found Frequency: 154.463 MHz

Description: Previously unidentified signal (17). Identified by Peter via email as being signals sent from portable traffic lights that are often used at roadworks.

unid17

X2 on iDEN

Sample Audio: 

Found Frequency: 154.463 MHz

Description: iDEN is an acronym for Integrated Digital Enhanced Network and is a technology developed by Motorola. It is a type of trunked radio with cellular phone benefits.

Link to RR identification discussion from submission email.

Thanks to Mike (VE3HER) for the submission.

x2 on iden

Funcube-1 Satellite

Sample Audio:

Found Frequency: 145.950 – 145.970 MHz

Mode: USB

Bandwidth: ~2 kHz

Description: The Funcube-1 is a Cubesat amateur radio satellite.

Decoding Software: Funcube Telemetry Dashboard

funcube-1_waterfall

Swedish Pocsag Minicall

Sample Audio:

Typical Frequency: ~161 MHz

Mode: NFM

Bandwidth: 20 kHz

Description: A short Pocsag 1200 signal used in electric plants and remote transformer and insulation stations.

Thanks to Joni for the submission.

Decoding Software: PDW

Video Examples: [1], [2]

swedish_minicall_pocsag

Unidentified Signals

If you know what any of these signals are please write in the comments. You can also submit any unidentified signals you would like to be added to [email protected]

(1)

Sample Audio: 

Found Frequency: 171.3 MHz

Description: Recognized by DSD as a NXDN96 signal, but is disputed in the comments section. (Possibly a bug in DSD).

QPSK2

(3) – ALE?

Sample Audio: 

Found Frequency:  HF Band

Description: Sound sample recorded in USB mode. Potentially some sort of 2G ALE signal. Similar signal shown in balints HF tour video. Possible a weather map transmitted from Tokyo as noted in the comments section by Syd, or 4xFSK from China as identified by K2RCN in the comments.

UnknownSignalWaterfall_2

(4)

Sample Audio: 

Found Frequency: HF Band

Description: Periodic pulses. Sound sample recorded in USB mode. Possibly a GlobeWireless signal as identified in the comments section by K2RCN.

 UnknownSignalWaterfall_4

(6)

Sample Audio: 

Found Frequency: 152.652 MHz

Description: Continuous signal. Audio sample recorded in NFM.

UnknownSignal_6

(7)

Sample Audio: 

Found Frequency: 162.863 MHz

Description: Continuous bursts. Audio sample recorded in NFM.

UnknownSignal_7

(8)

Sample Audio: 

Found Frequency: 457.168 MHz

Description: Audio sample recorded in NFM.

UnknownSignal_8

(10)

Sample Audio: 

Found Frequency: 452.325 Mhz

Description: Sent in over email. Sounds like Motorola Type II smartnet, but Unitrunker does not recognize.

unid_10

(12)

Sample Audio: 

Found Frequency: 154.646 MHz

Description: Sent in over email. Repeats every minute.

154646

(14)

Sample Audio: 

Found Frequency: 433 MHz

Description: Sent in over email.

Hello! I was listening in the 433MHz band and saw this blip (about 1-2sec) on the waterfall on 433.873 (Millville, MA). It repeats about every 30-50 seconds, though doesn’t seem to be the same every time. Maybe a wireless instrument of some type (weather or something?). The only clear sound of it I could get was with AM, about a 4.2kHz wide filter (rtl-sdr, gqrx linux). Any ideas? Thanks!

 

(15)

Sample Audio: 

Found Frequency: 455 MHz

Description: Sent in over email.

unid15

(16)

Sample Audio: 

Found Frequency: 173.262 MHz

Description: Sent in over email.

unid16

(18)

Sample Audio: None

Found Frequency: ~856 MHz

Description: Sent in over email.

The antenna has a Yagi pointed to West from 23.5° South latitude, 47.46° West longitude.
The signal can be local or from the sky. The signal is horizontal polarized.

uid16

(19)

Sample Audio: 

Found Frequency: ~409.6 MHz

Description: Sent in over email. Recorded in NFM mode.

screen