Category: Amateur Radio

Gospell GR-227: New SDR Based Digital Broadcast Radio Adapter for Cars

Over on the SWLing Post blog we’ve seen news of this new SDR based car radio called the Gospell GR-227. Gospell is a Chinese manufacturer of various broadcast consumer radio products including DRM receivers. It is intended to be an adapter for your car that lets you listen to digital broadcast stations such as DAB/DAB+ on VHF and DRM on UHF, but it can also be used for standard AM and FM reception. From the product sheet it looks like it will simply plug into you car USB port, and output audio through that port into your cars head unit. Control of the unit is through an Android app.

There doesn’t seem to be anything stopping someone from using this outside of a car though, so perhaps depending on the price and software hackability available it might make a good PC or Raspberry Pi based HF receiver for all modulation types too.

Over on the Gospell Facebook page are images showing the Gospell running at IBC 2017 and next to other upcoming SDR based digital broadcast receivers like the Titus II.

Gospell SDR Connected to a Car Radio Head Unit
Gospell SDR Connected to a Car Radio Head Unit

No word yet on a release date or pricing. The press release reads:

Chengdu, China, September 04, 2017 – A new adaptor specifically designed for in-car use that simplifies digital radio on the road will be introduced at IBC by Gospell.

GR-227 is a small, low-cost adaptor that acts as an aftermarket add-on to car stereos receiving high-quality digital broadcast programs and data application, and serving it to the car audio system over a USB cable. Based on software defined radio technology, GR-227 is compatible with DAB, DAB+, DRM and is DRM+ ready. It is also powerful enough to support digital audio decoding such as extended HE-AAC (xHE-AAC).

GR-227 literally works with any kind of car stereos with a USB port. Our patent pending technology allows the adaptor to behave like a thumb drive when plug into a USB port and makes it compatible with most of the music players not only in car but also for home use.

To make the most of GR-227, the Gospell Smart Tune App for Android has been included to add more features. When partnered with an Android powered car stereo, the App not only allows for playback of the broadcast audio program but data application which brings much fun to car entertainment.

By connecting the supplied triple band active antenna which can be attached to the windscreen through the SMA antenna connector, the reception in DRM, FM and DAB bands can be significantly improved, offering maximum flexibility between different broadcasting standards.

Installing the plug-and-play GR-227 adaptor to your car is easy and doesn’t require changing your car stereo. It is one of the easiest ways to upgrade your car radio to digital without replacing anything.

The Gospell’s aftermarket car adaptor range starts with USB model but more will follow to support more car stereo types.

Haochun Liu, DRM director, Gospell, said: “By leveraging SDR, we can now combine multiple broadcasting standards together to offer flexibility and cost advantages, coupled with easy installation without the necessity of buying a new car stereo as in traditional solutions.”

For additional information, please visit or contact Gospell sales at [email protected]

About Gospell

Founded in 1993, Gospell Digital Technology Co Ltd (GOSPELL). is a private hi-tech enterprise with R&D, manufacturing, business consultancy and planning, trade, delivery, project implementation and after sales service, acting as a complete DTV and triple-play solution provider for Digital TV/OTT related projects. Headquartered in GOSPELL INDUSTRIAL PARK at Chenzhou, Hunan Province for CPE related production manufacturing, GOSPELL also has its office in Shenzhen for business/marketing management and administration, in Chengdu for R&D and headend/transmitter system production/debugging and Customer Service Center, and in 12 cities in China as well as international offices in India, Africa and Mexico.

[First seen on]

Comparing SSB, NFM, Codec2 and Opus with QRadioLink and an RTL-SDR

Earlier in the month we posted about Adrian M’s video that showed his QRadioLink software running on Android with an RTL-SDR. QRadioLink is a digital amateur radio voice decoder and encoder, that currently supports modern digital voice codecs like Codec2 and Opus. It’s compatible with a wide range of SDRs including the RTL-SDR, as well as TX capable SDRs for transmitting.

Over on YouTube Adrian M has recently uploaded a new video showing a comparison of QRadioLink receiving SSB, NFM, Codec2 and Opus voice signals at the same initial power levels. The results show that the digital modes are generally much clearer and static free even at low TX levels. He writes:

The Linux SDR transceiver application QRadioLink uses here an RTL-SDR dongle for reception. The QRadioLink transmit chain is using an USRP B200 with output power set at about half the maximum. The Codec2 digital mode works down to a low CNR (6 dB) where even SSB is hard to copy. The Opus mode provides good voice quality at a level where analog narrow FM is noisy.
The code for QRadioLink is fully open-source, licensed under GPLv3, and can be found on Github, where it’s undergoing development. Bug reports, patches and suggestions are welcome.

QRadioLink is available over on GitHub.

LimeSDR Transmitting on the LattePanda

Just last week we posted about how Marty Wittrock was able to get his LimeSDR receiving perfectly on his LattePanda mini Windows 10 PC with SDRAngel. Now Marty has uploaded a new video which shows the LimeSDR running on the LattePanda and SDRAngel again, but this time transmitting 40m LSB voice. At this stage Marty is well on his way to creating a fully portable LimeSDR based ham transceiver. He writes about his setup:

Setup: LattePanda Win10/64-bit, LCD, Capacitive Touchscreen, LimeSDR and SDRAngel Win32 with a transmit device loaded…Also using a USB 2.0 audio device to make the microphone and speaker audio connections…WORKS GREAT..!!

The LimeSDR is a RX and TX capable SDR with a frequency range of 100 kHz – 3.8 GHz, bandwidth of up to 61.44 MHz, 12-bit ADC and 2×2 RX/TX channels. Recently the LimeSDR team have been crowdfunding for their new ‘LimeSDR Mini’ which is a smaller and cheaper feature reduced version of the standard LimeSDR. While all the early bird $99 USD units have been sold out, they are still available at the $139 USD price. Currently the crowdfunding campaign has already reached it’s $100,000 USD target with 35 days left.

One important ‘feature reduction’ to note is that the LimeSDR Mini can only tune down to 10 MHz, so it may not be as useful as the full $289 USD LimeSDR for creating a SDR based ham transceiver like what Marty is doing.

Transmitting DVB-S with a PlutoSDR and Receiving it with an RTL-SDR

Over on YouTube Christopher Bridges has uploaded a video showing him using a PlutoSDR and a GNU Radio program to transmit a DVB-S signal, which is then received with an RTL-SDR. DVB-S is a digital video broadcasting standard designed for satellite transmissions and digital amateur television video (DATV) also uses DVB-S in the 1.2 GHz amateur band. In this example the PlutoSDR transmits at 1.28 GHz.

Chris uses the rtl_sdr command line software to receive the raw IQ data at 1 MSPS, and then uses the leandvb software to decode the raw IQ file directly into a video file.

If you’re interested in TXing DVB-S/DATV but don’t have a transmit capable SDR, then we note that even a Raspberry Pi just by itself can be used to transmit it with rpidatv.

Decoding Amateur Radio Digital Voice with an RTL-SDR and the QRadioLink Android App

Thank you to Adrian for submitting his video about using the Android App called QRadioLink and an RTL-SDR to decode digital amateur radio voice transmissions. Adrian writes that in the video the RTL-SDR connects to the Android phone with a USB OTG cable and uses a sample rate of 1 MSPS. He also writes the following about QRadioLink:

QRadioLink is a building platform which allows experimenting with VHF-UHF SDR transceivers using different modulation schemes for digital data transmissions. So far digital voice and text transmission is supported, using either a narrow band modem and Codec2 or a high bandwidth modem and Opus. Supported hardware includes the RTL-SDR, Ettus USRP, HackRF, BladeRF and in general all devices supported by libgnuradio-osmosdr.

Monitoring Train Railway Lines with an RTL-SDR and ATCS Monitor

Back in June Gus Gorman showed us via a YouTube tutorial and demo on how to monitor ATSC (Advanced Train Control System) signals from trains. ATSC is found in the USA and is used for things like communications between trains, rail configuration data, train location data, speed enforcement, fuel monitoring, train diagnostics and general instructions and messages. Gus used an RTL-SDR and the ATSC Monitor software to decode the signals and give us a view of the current state of the railway line.

In his latest video Gus gives a better demonstration of the software by parking outside a train station so that he can receive many more signals from the trains. At the start of the video he shows the track view of BNSF trains, and then later switches over to the Union Pacific track view.

Building a Hydrogen Line Front End on a Budget with RTL-SDR and 2x LNA4ALL

Adam 9A4QV is the manufacturer of the LNA4ALL, a high quality low noise amplifier popular with RTL-SDR users. He also sells filters, one of which is useful for hydrogen line detection. Recently he’s uploaded a tutorial document showing how to use 2x LNA4ALL, with a filter and RTL-SDR for Hydrogen Line detection (pdf warning). 

Hydrogen atoms randomly emit photons at a wavelength of 21cm (1420.4058 MHz). Normally a single hydrogen atom will only very rarely emit a photon, but since space and the galaxy is filled with many hydrogen atoms the average effect is an observable RF power spike at 1420.4058 MHz. By pointing a radio telescope at the night sky and integrating the RF power over time, a power spike indicating the hydrogen line can be observed in a frequency spectrum plot. This can be used for some interesting experiments, for example you could measure the size and shape of our galaxy. Thicker areas of the galaxy will have more hydrogen and thus a larger spike.

In his tutorial Adam discusses important technical points such as noise figure and filtering. Essentially, when trying to receive the hydrogen line you need a system with a low noise figure and good filtering. The RTL-SDR has a fairly poor noise figure of about 6dB at 1420MHz. But it turns out that the first amplifier element in the receive chain is the one that dominates the noise figure value. So by placing an LNA with a low noise figure right by the antenna, the system noise figure can be brought down to about 1dB, and losses in coax and filters become negligible as well. At the end of the tutorial he also discusses some supplementary points such as ESD protection, bias tees and IP3.

One note from us is that Adam writes that the RTL-SDR V3 bias tee can only provide 50mA, but it can actually provide up to 200mA continuously assuming the host can provide it (keep the dongle in a cool shaded area though). Most modern USB 2.0 and USB3.0 ports on PCs should have no problem providing up to 1A or more. We’ve also tested the LP5907 based Airspy bias tee at up to 150mA without trouble, so the 50mA rating is probably quite conservative. So these bias tee options should be okay for powering 2xLNA4ALL.

Finally Adam writes that in the future he will write a paper discussing homebrew hydrogen line antennas which should complete the tutorial allowing anyone to build a cheap hydrogen line radio telescope.

One configuration with 2xLNA4ALL, 1x interstage filter, and 1x recceiver side filter with bias tee.
One configuration with 2xLNA4ALL, 1x interstage filter, and 1x recceiver side filter with bias tee.

CyberSpectrum Melbourne: Building a Cheap FSQ Transceiver with Arduino, Raspberry Pi and RTL-SDR

FSQ (Fast Simple QSO) is a relatively new ham band mode for making text QSO’s (contact or exchange of information with another ham) over HF frequencies. It is a low data rate mode similar to PSK31 but with some interesting features like relaying which allows signals to be relayed further via other FSQ stations.

Over at in Melbourne, Australia a Cyberspectrum SDR meetup is held every few weeks. At this weeks meetup @faulteh discusses the FSQ mode and some of it’s interesting features. He also shows how he can transmit FSQ using a Si5351 clock generator and Arduino (with filtering). In the future he hopes to also create a fully automated receive station using a Raspberry Pi and RTL-SDR dongle.

The Arduino FSQ code is available on GitHub, and more information is available on his page.