Category: Amateur Radio

TechMinds: The Langstone Project – SDR Transceiver with PlutoSDR

Over on his YouTube channel Tech Minds has uploaded a video introducing and demonstrating the Langstone Project. Langstone is a standalone homebrew SDR transceiver project by Colin Durbridge (G4EML) which at its most basic implementation is based on an Adalm PlutoSDR, Raspberry Pi 4 and 7" LCD touchscreen. 

In the video Tech Minds shows how to install the Langstone Pi4 software on the SD card, and then demonstrates it in action. He also notes that the output power of the PlutoSDR is too low for any real communications, however it is possible to add an amplifier and appropriate band filtering. To help with that, the software makes us of the GPIO pins on the Pi4 which can be used to switch in optional band filters.

Langstone Project - SDR Transceiver using an Adalm PlutoSDR

33% OFF Sale: Ultra Stable Bullseye LNB for QO-100/Es’Hail-2

Back in May we started selling the Bullseye LNB on our store, which is an ultra stable LNB for receiving QO-100 and other Ku-Band satellites/applications. We have recently managed to secure a good deal from the supplier. However, our storage warehouse is now low on space and we are hence running a 33% off stock clearance sale with the unit now priced at only US$19.97 including free worldwide shipping to most countries. 

To order the product, please go to our store, and scroll down until you see the QO-100 Bullseye TCXO LNB heading. Alternatively we also have stock via our Aliexpress store or on eBay.

What is QO-100 and an LNB?

QO-100 / Es'hail-2 is a geostationary satellite at at 25.5°E (covering Africa, Europe, the Middle East, India, eastern Brazil and the west half of Russia/Asia) providing broadcasting services. However, as a bonus it also has the world's first amateur radio repeater in geostationary orbit. Uplink is at 2.4 GHz and downlink is at 10.5 GHz.

Most SDRs do not tune all the way up to 10.5 GHz, so an LNB (low noise block) is typically used, which contains the feed, an LNA, and a downconverter which converts the 10.5 GHz frequency into a much lower one that can be received by most SDRs.

What's special about the Bullseye LNB?

In order to properly monitor signals on QO-100 an LNB with a Temperature Compensated Oscillator (TCXO) or other stabilization method is required. Most LNBs have non-stabilized crystals which will drift significantly over time on the order of 300 PPM with temperature changes.  This means that the narrowband signals used on QO-100 can easily drift out of the receive band or cause distorted reception. Software drift compensation can be used to an extent, but it works best if the LNB is somewhat stable in the first place. It is possible to hand modify a standard Ku-band LNB by soldering on a replacement TCXO or hacking in connections to a GPSDO, but the Bullseye LNB ready to use with a built in 1PPM TCXO and is cheap.

Reviews

In the past Tech Minds has reviewed this product favourably in the video shown below. In a second video he has also shown how the Bullseye can be combined with a transmit helix in order to create a dual feed uplink + downlink capable antenna.

Ultra Stable Bullseye LNB For QO-100 Es Hail2 10 kHz

F4DAV has also reviewed the unit on his website, concluding with the following statement:

As far as I know the BE01 is the first affordable mass-produced Ku-band TCXO LNB. These early tests suggest that it can be a game changer for amateur radio and other narrowband applications in the 10 GHz band. The stability and ability to recalibrate should allow even unsophisticated analog stations to tune to a 5 kHz channel and remain there for hours at a time. For SDR stations with beacon-based frequency correction, the absolute accuracy removes the need to oversample by several hundred kHz or to scan for the initial frequency offset.

There are also several posts on Twitter by customers noting good performance

Official Feature List + Specs

Features

  • Bullseye 10 kHz BE01
  • Universal single output LNB
  • Frequency stability within 10 kHz in normal outdoor environment
  • Phase locked loop with 2 PPM TCXO
  • Factory calibration within 1 kHz utilizing GPS-locked spectrum analyzers
  • Ultra high precision PLL employing proprietary frequency control system (patent pending)
  • Digitally controlled carrier offset with optional programmer
  • 25 MHz output reference available on secondary F-connector (red)

Specifications 

  • Input frequency: 10489 - 12750 MHz
  • LO frequency 9750/10600 MHz
  • LO frequency stability at 23C: +/- 10 kHz
  • LO frequency stability -20 - 60C: +/- 30 kHz
  • Gain: 50 - 66 dB
  • Output frequency: 739 - 1950 MHz (low band) and 1100 - 2150 (high band)
  • Return loss of 8 dB (739 - 1950 MHz) and 10 dB (1100 - 2150 MHz)
  • Noise figure: 0.5 dB

We note that an external bias tee power injector is required to power the LNB as it requires 11.5V - 14V to operate in vertical polarization and 16V - 19V to operate with horizontal polarization. The bias tee on the RTL-SDR Blog V3 outputs 4.5V so it is not suitable.

Setting up a Raspberry Pi for Ham Radio with RTL-SDR

Over on his blog F4GOH has posted a rather comprehensive tutorial consisting of seven PDF documents showing how he's set up his Raspberry Pi for ham radio and other RF projects. The PDF's essentially form a book that starts with the very basics like preparing an OS for the Pi SD Card, powering on the Pi, finding the IP address and connecting to it with SSH or VNC.

The tutorials move on to installing and using various ham radio programs like Fldigi, WSJT-X , GQRX, GNU Radio, before going on to teach some more Linux concepts. The final two PDF tutorials cover the installation and use of OpenWebRX for remote RTL-SDR use, R2Cloud for decoding weather satellites, and finally Radiosonde Auto RX for decoding radiosonde's on weather balloons.

[Also seen on Hackaday]

Raspberry Pi for Ham Radio

Comparing Shortwave Antennas with an RTL-SDR and FT8 Monitoring

Eric had an inverted L and T3FD antenna set up in his backyard and he wanted to test both at the same time to see which received HF better overall. Rather than relying on subjective 'by ear' measurements he decided to use the digital FT8 mode as his comparison signal. FT8 is quite useful for this purpose as the decoded data includes a calculated signal-to-noise (SNR) reading which is a non subjective measure that can be used for comparisons. It also contains information about the location of the signal which can be used for determining the DX capability of the antenna. 

To perform the comparison he used two or our RTL-SDR Blog V3 dongles running in direct sampling mode, and also added an additional low pass filter to prevent excessively strong TV and FM signals from overloading the input. Each antenna is connected to it's own RTL-SDR, and a modified version of GQRX with remote UDP control is used to switch between multiple FT8 frequencies so that multiple bands can be covered in the experiment. WSJT-X is used for decoding the FT8 packets.

After logging SNR values for several days he was able to plot and compare the number of packets received by each antenna, the maximum distance received by each antenna. His results showed that his inverted L antenna was best in both regards. He then performed a relative comparison with the SNR readings and found that the inverted L performed best apart from at 14 MHz, where the T3FD performed better.

In further tests he also compared the antennas on which signal headings they were receiving best from. The results showed that Erics inverted L was receiving best from one direction only, whereas the T3FD received signals from more headings.

Eric's post includes full instructions on the software setup and also Python code which can be used to replicate his experiments. We think that this is a great way to objectively compare two types of antennas.

Antenna directionality measurements via FT8 received headings

Using a PlutoSDR and Mixer to Transmit 70cm DATV to a 23cm Satellite Receiver

Over on her YouTube channel, SignalsEverywhere, Sarah has uploaded a new video showing how she uses a PlutoSDR, HackRF and mixer to transmit DVB-S digital amateur TV to a standard satellite set top box. In this video the idea is to get a little more range by using the PlutoSDR to transmit in the 70cm band, then upconverting that to the 23cm band right at the satellite receiver. Transmitting at the lower frequency yields a higher power output from the PlutoSDR and less cable loss. The mixer consists of a passive mixer chip and a HackRF is used as the mixer LO signal source as a temporary test solution.

Digital TV Transmitter 70cm ATV to 23cm Satellite Receiver Using a Mixer/Upconverter

TechMinds: Using Public Online SDRs without SDR Hardware

This weeks video on the TechMinds channel explores the various online web SDRs that are available to access for free. Accessing these online SDRs does not require any hardware apart from a PC and internet connection, although of course you are then receiving signals from a different location to yourself. 

In the video he shows how to access the SDR# Spy Server Network which mostly consists of Airpsy and RTL-SDR units, the SDR-Console V3 Server network which consists of a wide array of different SDRs, the browser based WebSDR network which is mostly soundcard based SDRs but also RTL-SDR and other SDRs, and finally the KiwiSDR network which is made up of KiwiSDRs.

Using Software Defined Radio Without SDR Hardware - WebSDR

RSGB Talk: How To Check and Report VDSL RFI with an SDR in the UK

Back in April we posted a video from Tech Minds where he showed us how to use special software combined with an SDRplay RSPdx to detect and report VDSL interference on the HF bands. VDSL or Very High Speed Digital Subscriber Line is an internet connection technology that runs over old copper phone wires allowing for a fast broadband connection. The frequencies used by VDSL are between 25 kHz to 12 MHz, and for VDSL2 up to 30 MHz. Unfortunately the frequencies used can result in high amounts of radio interference from RFI radiating from the copper phone lines which is a major problem for HF amateurs and short wave listeners.

Recently John Rogers (M0JAV) presented a talk via the UK amateur radio organization RSGB. In the talk he explains how VDSL works, why it causes RFI and how to check for VDSL RFI using an SDR and the Lelantos software. He also shows how he drove around with a magnetic loop antenna looking for VDSL RFI sources in his neighbourhood. He then goes on to call out for more volunteers in the UK to submit RFI reports to Ofcom as they responded that they won't do anything about the interference unless there are more complaints. 

The RSGB EMC Committee (EMCC) has been investigating VDSL interference since 2014. As the number of installations has risen to over 30M the interference level at amateur radio stations has also increased. The majority of radio amateurs are now impacted by this problem.

In the May 2020 RadCom we outlined how to detect and estimate the level of interference. This can be done by inspection of an SDR spectrum display or by taking a recording and then using a SW package—developed by Martin Sach of the EMCC—which identifies the VDSL signature in the recording and shows how many different VDSL lines are causing the problem and what their relative strengths are.

This talk demonstrates what to look for and how to use the tools to find out if you have a problem yourselves. We hope this will help you respond to our call for action and complain to Ofcom about the level of RFI you are subjected to.

John Rogers, M0JAV
Chair EMCC

RSGB Tonight @ 8 - How to check for VDSL RFI with John Rogers, M0JAV

The Silphase R1 SDR Receiver

Thanks to Thomas' SWLing Blog for bringing to attention the Silphase R1 SDR receiver. This is an upcoming high performance HF SDR receiver being manufactured in the EU by a Polish company called Silphase. The R1 appears to be targeting premium SWLer customers with a price of US$1199. However, they note that by the end of 2020 they will have a 25W transceiver option, and later a 100W transceiver option. The SDR is currently available for preorder only and the sign up form can be found at the bottom of their website.

The Silphase R1 comes with a 5" touch screen that shows a spectrum display, has dual VFO's, four speakers and a metal alloy enclosure. It also comes with a built in telescopic antenna, but external antennas can be connected with the F connector. The tuning range is just the HF bands from 0.1 - 30 MHz and the ADC resolution is 16 bits.

Rendering of the upcoming Silphase R1 HF SWLing SDR