Thank you to James Mainwaring for letting us know about the latest update to his "ADS-B Radar (RTL-SDR)" Android App. The update brings an Open Street Map (OSM) display, allowing for aircraft to be directly plotted on the map.
As before the app works with an RTL-SDR directly connected to the Android device, and also has a radar like display.
James also has other apps on the Google Play store for FM Radio, Airband and Ham Radio listening.
Back in 2016 Michael Ossmann, founder of Great Scott Gadgets and creator of the HackRF released schematics for 'Opera Cake', a rapid RF switching add on board for the HackRF. We also saw back in a January 2018 post how Opera Cake was capable of being used as the switching hardware for Pseudo-Doppler direction finding. Up until now Opera Cake has only been available as a schematic, for advanced hackers who could produce and build the board themselves.
Opera Cake is an antenna switching add-on board for HackRF One that is configured with command-line software either manually, or for automated port switching based on frequency or time. It has two primary ports, each connected to any of eight secondary ports, and is optimized for use as a pair of 1x4 switches or as a single 1x8 switch. Its recommended frequency range is 1 MHz to 4 GHz.
When HackRF One is used to transmit, Opera Cake can automatically route its output to the appropriate transmit antennas, as well as any external filters, amplifiers, etc. No changes are needed to the existing SDR software, but full control from the host is available.
Opera Cake also enhances the HackRF One’s use as a spectrum analyzer. Antenna switching works with the existing hackrf_sweep feature, which can sweep the whole tuning range in less than a second. Automatic switching mid-sweep enables the use of multiple antennas when sweeping a wide frequency range.
In her blog post, Charlie explains her code in greater detail, noting that it draws inspiration from AirplaneJS and rtlsdr.js. She explains how the Web USB API works, how to process the raw ADS-B data, and what her final setup looks like.
A demo site that you can use to directly connect to your RTL-SDR is available here.
In the past we've seen other WebUSB projects, like "aprs-sdr" which creates an APRS repeater system using a HackRF.
Over on YouTube, Tom the Dilettante has uploaded a video demonstrating how to receive HF signals with an RTL-SDR Blog V3 running in direct sampling mode. This is something already known to most RTL-SDR fans, but on the RTL-SDR V3 we have built in a direct sampling circuit that enables reception below 24 MHz with a simple settings change in software.
In the past and with other dongle brands, enabling direct sampling required hardware mods involving directly soldering a wire antenna to very small pins or pads. Direct sampling is not a high performance mode for HF, but in many situations it can be good enough for casual listening.
In his video Tom demonstrates HF reception with the RTL-SDR Blog V3 and an MLA-30 active loop antenna. This is a cheap loop antenna available on Aliexpress that works very well for the price.
Listen Around the World - No Internet Required (HF & Shortwave on RTL SDR)
NASA's Radio Jove is a project that enables students and amateur scientists from around the world to observe and analyze the HF radio emissions from Jupiter, our Sun and our galaxy using easy to construct HF radio telescopes that receive spectrographs from 16-24 MHz. The project has existed for more than two decades, and these days the telescope builds mostly make use of low cost software defined radios.
In a presentation for the Society of Amateur Radio Astronomers (SARA) Richard Flagg & Jim Sky talk about what sort of hardware is used these days for the Radio Jove project. They note that SDRs like the Softrock, Funcube Dongle Pro+, SDR-IQ, SDR-14, RTL-SDR, and RASDR have been used. They go on to discuss some of the spectrograph logging software that is used with the project as well.
The presentation slides in PDF form can be found here.
Richard Flagg & Jim Sky: Radio Jove Spectrograph Hardware and Software (RJ10/11)
Over on his YouTube channel "saveitforparts" has in the past created a portable homemade 'tricorder' which was a boxed up Raspberry Pi with multiple sensors including an RTL-SDR. One new application he's found for the tricorder is the ability to detect the beacons from Starlink satellites using the RTL-SDR and an LNB.
Starlink beacons typically transmit at around 11.325 GHz, so to receive them with an RTL-SDR a downconverter and antenna such as an LNB is required.
In the video he demonstrates the hardware in use, and shows some of the beacons being received on the spectrum, via the tricorders built in LCD screen.
SatDump is a popular piece of software that can be used with RTL-SDRs and other software defined radios for decoding images from a wide array of weather imaging satellites including GOES, GK-2A, NOAA HRPT, FengYun, Electro-L and Meteor M2 LRPT + HRPT, and many others (note: there is no APT support at the moment, but it is planned for the future). It is compatible with Windows, Linux and even has an Android APK available.
Over on the Frugal Radio YouTube channel Rob has uploaded part two of his two part series on the KrakenSDR. The KrakenSDR is our 5-channel coherent radio based on RTL-SDRs, and it can be used for applications like radio direction finding and passive radar. We successfully crowd funded the device on Crowd Supply.
In the first video Rob unboxed the KrakenSDR and set up the software. In this second video he takes the KrakenSDR out on a drive and is able to successfully locate the transmission sources of two unknown transmitters.
In the first part of the video Rob shows how he sets up his vehicle roof antennas and how he routes his cabling into the vehicle and KrakenSDR. He then shows his drivers view as he locates the site of a DMR trunked network user which ends up to be a factory plant. In his second test Rob locates a P25 transmitter site. In both tests Rob notes how he was impressed at how quickly a location was able to be determined, taking only a few minutes each time.
KrakenSDR - WOW! Amazing Direction Finding Tests : Part 2