Category: News

RTLSDR-Airband V3 Released

Thanks to reader Lee Donaghy for writing in and little us know that RTLSDR-Airband was recently updated to include SoapySDR support. This allows the software to now work with almost any SDR including the RTL-SDR, Airspy, SDRplay, HackRF, LimeSDR and more. They have also removed the 8-channels per device limitation and applied various bug fixes too. The full changelog is posted at the end of this post.

RTLSDR-Airband is a Linux based command line tool that allows you to simultaneously monitor multiple AM or FM channels per SDR within the same chunk of bandwidth. It is great for monitoring narrowband communications such as aircraft control and can be used to feed websites like, or for use with a Icecast server, or simply for continuously recording multiple channels to an MP3 file locally. It is also very useful for those running on low powered computing hardware who want software that uses less CPU power than a full GUI program like GQRX or CubicSDR.

Version 3.0.0 (Feb 10, 2018):

  • Major overhaul of the SDR input code - now it's modular and hardware-agnostic (no longer tightly coupled with librtlsdr).
  • Support for SoapySDR vendor-neutral SDR library - any SDR which has a plugin for SoapySDR shall now work in RTLSDR-Airband.
  • Support for Mirics DVB-T dongles via libmirisdr-4 library.
  • Support for RTLSDR is now optional and can be disabled at compilation stage.
  • Removed the 8-channels-per-device limit in multichannel mode.
  • Configurable per-device sampling rate.
  • Configurable FFT size.
  • Support for multibyte input samples.
  • Support for rawfile outputs (ie. writing raw I/Q data from a narrowband channel to a file for processing with other programs, line GNUradio or csdr).
  • INCOMPATIBLE CHANGE: removed rtlsdr_buffers global configuration option; buffer count can now be adjusted with a per-device "buffers" option.
  • INCOMPATIBLE CHANGE: removed syslog global configuration option; syslog logging is now enabled by default, both in foreground and background mode. To force logging to standard error, use -e command line option.
  • Added -F command line option for better cooperation with systemd. Runs the program in foreground, but without textual waterfalls. Together with -e it allows running rtl_airband as a service of type "simple" under systemd. Example rtl_airband.service file has been adjusted to reflect this change.
  • Added type device configuration option. It sets the device type (ie. the input driver which shall be used to talk to the device). "rtlsdr" is assumed as a default type for backward compatibility. If RTLSDR support has been disabled at compilation stage, then there is no default type - it must be set manually, or the program will throw an error on startup.
  • Frequencies in the config can now be expressed in Hz, kHz, MHz or GHz for improved readability.
  • Lots of bugfixes.
  • Rewritten documentation on Github Wiki.

SDR-Console V3 Beta Now Released: Console Server Now Available

SDR-Console V3 is the latest in the line of the free SDR-Console software packages from developed Simon Brown. Recently SDR-Console V3 left its 'preview' software status and moved into 'beta' production status. 

SDR-Console is a general purpose SDR program similar to other software like SDR#, HDSDR and SDRUno. SDR-Console V3 however sets itself apart by being one of the most feature rich packages with goodies like advanced DSP and NR options, frequency favorite lists, IQ recording and playback with reverse and fast forward, built in CW Skimmer and satellite tracker, independent receiver control with matrix view, signal history export, a recording scheduler, remote server and in the future support for SDRs with transmit capability.

SDRConsole V3 Beta Supported Radios
SDRConsole V3 Beta Supported Radios

One interesting feature released with the beta version is the SDR-Console server, which allows you to use an SDR remotely over a network such as a local LAN or over the internet. We tested the server on our local machine. After setting up the server account, adding an RTL-SDR radio definition and installing the server Windows service we were able to successfully connect and receive flawlessly. The server appears to limit the maximum bandwidth to 1 MHz.

SDR-Console and the server currently support multiple SDR hardware including the RTL-SDR. SDRplay have blogged about support for their line of RSP products too, and have also created a public internet connected RSP1A demo which anyone can connect to and use (assuming that you have a decent enough internet connection). A list of public Console V3 servers can be found by clicking on the 'SDR Space' button when adding a 'V3 server' radio definition in SDR-Console V3. Currently there are multiple locations and SDR hardware publically available including ELAD FDM-S1's, SDRplay units, Airspy HF+'s as well as RTL-SDR's. We tested a few remote servers and were able to easily connect to most of them and get good smooth throughput.

SDR-Console V3 can be downloaded here.

Current Console V3 Servers
Current Console V3 Servers

Below we show a screenshot of SDR-Console V3 Beta 1 receiving from a remote SDRplay RSP1A with multiple IF channels selected and with matrix view active on a second screen.

SDR-Console V3 Beta 1 Receiving Remote RSP1 in Matrix View
SDR-Console V3 Beta 1 Receiving Remote RSP1 in Matrix View

Also check out the post the blog did on the beta release to see an additional perspective and some example videos of SDR-Console V3 in action.

Upcoming Book “Inside Radio: An Attack and Defense Guide”

Unicorn team are information security researchers who often also dabble with wireless security research. Recently they have been promoting their upcoming text book titled "Inside Radio: An Attack and Defense Guide".

Judging from the blurb and released contents the book will be an excellent introduction to anyone interested in today's wireless security issues. They cover topics such as RFID, Bluetooh, ZigBee, GSM, LTE and GPS. In regards to SDRs, the book specifically covers SDRs like the RTL-SDR, HackRF, bladeRF and LimeSDR and their role in wireless security research. They also probably reference and show how to use those SDRs in the  chapters about replay attacks, ADS-B security risks, and GSM security.

The book is yet to be released and is currently available for pre-order on Amazon or Springer for US$59.99. The expected release date is May 9, 2018, and copies will also be for sale at the HITB SECCONF 2018 conference during 9 - 13 April in Amsterdam.

The blurb and released contents are pasted below. See their promo page for the full contents list:

This book discusses the security issues in a wide range of wireless devices and systems, such as RFID, Bluetooth, ZigBee, GSM, LTE, and GPS. It collects the findings of recent research by the UnicornTeam at 360 Technology, and reviews the state-of-the-art literature on wireless security. The book also offers detailed case studies and theoretical treatments – specifically it lists numerous laboratory procedures, results, plots, commands and screenshots from real-world experiments. It is a valuable reference guide for practitioners and researchers who want to learn more about the advanced research findings and use the off-the-shelf tools to explore the wireless world.

Qing YANG is the founder of UnicornTeam & the head of the Radio Security Research Department at 360 Technology. He has vast experience in information security area. He has presented at Black Hat, DEFCON, CanSecWest, HITB, Ruxcon, POC, XCon, China ISC etc.

Lin HUANG is a senior wireless security researcher and SDR technology expert at 360 Technology. Her interests include security issues in wireless communication, especially cellular network security. She was a speaker at Black Hat, DEFCON, and HITB security conferences. She is 360 Technology’s 3GPP SA3 delegate.

This book is a joint effort by the entire UnicornTeam, including Qiren GU, Jun LI, Haoqi SHAN, Yingtao ZENG, and Wanqiao ZHANG etc.


SDRuno Updated to Version 1.22

The official software package of the SDRplay range of products is SDRuno and it has recently been updated to version 1.22. SDRuno is also compatible with the RTL-SDR.

In addition to some UI improvements for new users, the main changes are pasted below. What's also very interesting is their road map which states that future versions of SDRuno will have frequency scanning capabilities, a remote network streaming server/client implementation and an API for the support of third party plugins. This would improve it's capabilities similar to that of SDR#.

• Support for 1366×768 default layout
• ADC overload detection in AGC off mode
• ADC overload acknowledgment system to avoid lockout condition
• Custom step size for each mode
• Band Button Groups (Ham Lower, Ham Upper, Broadcast)
• Two additional SP1 width presets (2560 and 3840)
• Additional menu option in memory panel to reset column widths (helps when upgrading)
• Scheduled Recording
• Auto update

• Registry reset now only clears 1.2+ entries
• SP1 Window max size supports 4K displays (3840×2160)
• Small improvements to the memory panel (panel width and field width changes)
• Improvements to the IF output mode
• UTC time fixed to 24 hour format
• Play!/Stop button colour coordinated
• Move MUTE button to make way for VOLUME label
• Moved Squelch value display to the right

• Log10 SING error
• Aero support detection to try to prevent rendering issues
• Freezing when switching to HiZ port in gain mode
• Gain “pumping” issue when in gain mode
• Settings panels not displaying properly when “un-minimised”
• Zoomed in frequency scale drag out of bounds bug
• Noise floor measurement bug
• Improved RSP error handling
• Sample rate change causing spectrum display issues
• Device selection bug

Known Issues
• SP2 CWAFC drift issue (Zoom/window size/freq display) – will be addressed in 1.23, workaround for now is to zoom out fully in the SP2 window and then the CWAFC feature will work.
• IF output mode disabled SP1 spectrum mouse clicks – temporary issue until LO is separated from the VFO (see plans below)

Following on from the 1.21 release where we outlined the features for coming releases, we have updated our plans, as shown below. The purpose of publishing this information is to give people an insight to the development plans but it is NOT a guarantee of the exact feature line-up and we cannot give release dates.

1.23 Intermediate update
• Recording of selected signal only (either I/Q or audio) to WAV file format
• Selected signal piped to VAC in I/Q format

1.3 Major update
• Separation of VFO and LO frequency control
• Frequency scanning

1.31 Intermediate update
• Remote client for network based streaming I/Q server applications

1.4 Major update
• Addition of new API for third party plugins

Download link:

SDRuno v1.22 Improved UI
SDRuno v1.22 Improved UI

UPDATE: Mike Ladd from SDRplay has uploaded a video showing what's in the new version.

SDR# Noise Reduction Plugins Updated + SDR-Console Testing Deep Learning Noise Reduction

SDR# Noise Reduction Algorithms
SDR# Noise Reduction Algorithms

Recently the SDR# team have updated the algorithm on the noise reduction plugins used in SDR#. It appears that both the IF and Audio noise reduction plugins were updated with a better smoothing algorithm. We briefly tested the new algorithm and compared it against an older version. The new algorithm has noticeably less hiss and is slightly clearer when compared at the same noise reduction level. We tested with the same threshold levels and using the speech profile.

At the same time we've also seen news that Simon of SDR-Console is working on another noise reduction algorithm based on deep neural networks in the latest private beta version. A video of it in action was posted by Paul J in the SDRplay users group (note that you will need a Facebook account and will probably need to be a member of the SDRplay group to view that video). The algorithm seems to be based on the RNNoise paper that was posted here. The SDR# algorithm was also tweaked based on information gained from that paper although it doesn't use neural networks directly.

SDR# NR Comparison

Unprocessed Audio

Old SDR# NR Algorithm

New SDR# NR Algorithm

XTRX SDR Campaign Now Live: Mini PCIE Based TX/RX SDR for $199

Back in early November we posted about the upcoming XTRX SDR, which is a small form factor 2 x 2 MIMO TX and RX capable SDR that is designed to fit into laptop Mini PCIE card slots. It is based on the LimeSDR RF chips, and has a tuning range of 10 MHz - 3.7 GHz, with a sample rate of up to 120 MSPS. It is also has some interesting additional features such as a built in GPSDO and an onboard FPGA which can be used to accelerate DSP tasks as well. The Mini PCIE interface was chosen for it's low latency transfer rates.

The card is designed for use cases such as creating LTE cellular networks, creating software defined 2G/3G/4G modems and using on board drones and in embedded systems. It can also be used for standard wideband monitoring and of course any other SDR applications compatible with Lime chips.

Today the crowdfunding campaign for the XTRX has begun. The early bird pricing is $179 USD (with 71 left at the time of this post - going down fast!), and the regular price is $199 USD. There are accessories available as well such as antenna and cable kits, a PCIe x2 adapter and a USB 3.0 adapter kit with enclosure. The XTRX team are hoping to raise 90k USD, with already 8k USD having been raised at the time of this post.

The XTRX Board
The XTRX Board

SDRplay Release the RSP1A: A $99 14-bit 1 kHz to 2 GHz Revision of the RSP1

Today SDRplay have released the RSP1A, a revision of the popular $99 USD RSP1 with some significant improvements. The press release is pasted below: 

SDRplay Limited has today announced the launch of a new Software Defined Radio product – the RSP1A.

The SDR-play RSP1A is a major upgrade to the popular RSP1 and is a powerful wideband full featured 14-bit SDR which covers the RF spectrum from 1 kHz to 2 GHz.

Due to its exceptional combination of performance and price, the RSP1 has proved to be a very popular choice as an “entry level” SDR receiver. Since launching the RSP1, we have learned a great deal about what people are looking for in SDR receivers, and where possible, we have incorporated these improvements and new features into the RSP1A.

The RSP1A therefore delivers a significant number of additional features which result in benefits to amateur radio enthusiasts as well as significant benefits for the scientific, educational and industrial SDR community.

Here are the main additional features of the RSP1A compared to the original RSP1:

  • ADC resolution increased to 14-bit native for sample rates below 6 MHz, increasing to 16 bits with decimation.
  • Enhanced RF pre-selection (greater filter selectivity plus 4 additional sub-bands compared to the original RSP1) for reduced levels of spurious responses
  • Improved LNA architecture with variable gain. The RSP1 had just a single gain step.
  • Improved intermodulation performance
  • Performance extended to cover 1kHz to 2GHz with a single antenna port.
  • Bias-T facility
  • Improved frequency stability incorporating a 0.5ppm TCXO (software trimmable to 0.01ppm)
  • Selectable broadcast AM/FM/DAB notch filters
  • RF shielding within the robust plastic casing

When used together SDRplay’s own SDRuno software, the RSP1A becomes a high performance SDR platform. The
benefits of using the RSP1A with SDRuno include:

  • Highly integrated native support for the RSP1A
  • Calibrated RF Power Meter with more than 100 dB of usable range
  • Calibrated S-Meter including support for IARU S-Meter Standard
  • The ability to save power (dBm) and SNR (dB) measurements over time, to a CSV file for future analysis
  • The IQ output wav files can be accessed for 3rd party applications

SDRplay has also worked with developers of the popular HDSDR, SDR-Console and Cubic SDR software packages to ensure compatibility. As with the RSP1, SDRplay provides multiplatform driver and API support which includes Windows, Linux, Mac, Android and Raspberry Pi 3. There is even a downloadable SD card image available for Raspberry Pi3 which includes Cubic SDR.

The RSP1A is expected to retail at approximately £76 (excluding taxes) or $100 (excluding taxes) For more information visit our website on

About SDRplay:

SDRplay limited is a UK company and consists of a small group of engineers with strong connections to the UK Wireless semiconductor industry. SDRplay announced its first product, the RSP1 in August 2014

The datasheet is available here (pdf), and a the full technical information is available here (pdf).

We've had a RSP1A beta preproduction unit for a few weeks now and will be releasing a full review comparing it against the RSP1 in a day or so. For a quick review conclusion we note that we've noticed that the filters are significantly more effective on the RSP1A compared to the RSP1, and the inclusion of the MW/FM and DAB notch filters help a lot in certain situations. The increased ADC resolution is due to decimation on board the MSi2500 chip and is noticeable in some situations, but does not seem to cause a huge improvement. Overall compared to the RSP1 some overloading problems are still present with strong signals, but intermodulation and imaging is reduced significantly and in some cases the RSP1A even outperforms the RSP2.

Also, Mike Ladd KD2KOG a member of the SDRplay technical support team has uploaded a video announcing and demoing the RSP1A. 



Airspy HF+ Released!

The much anticipated Airspy HF+ has just been released for sale. The cost is $199 USD plus shipping from the manufacturer iTead in China which costs about $6 for a registered air mail parcel or $19 for DHL express delivery to the USA. There was a coupon available via this tweet, but it ran out within hours.

The HF+ is also available for preorder for US/Canada customers over at the reseller. Currently there is a last chance $50 coupon available for US/Canada residents purchasing from by using the code provided in the link. We don't know how long that coupon will last though.

Note that we believe that these are preorders, with shipping expected to commence in early December.

If you didn't know already the Airspy HF+ is a HF/VHF RX only SDR which has extremely high dynamic range and excellent sensitivity. The high dynamic range means that the SDR is unlikely to ever overload on strong signals meaning that no external filtering which can reduce SNR/sensitivity is required. The minimum discernible signal (MDS) measurements are also excellent meaning that sensitivity to weak signals is excellent too. With high dynamic range, great sensitivity and low cost combined, this SDR blows most of the current offerings out of the water by being able to 'just work' without the need to fiddle around with gain sliders, filters or attenuation.

Airspy HF+: Why Linearity Matters
Airspy HF+: Why Linearity Matters

The only disadvantage to similar offerings like the Airspy R2/Mini or SDRplay is the reduced frequency range and bandwidth specs. On the HF+ the frequency range tops out at 260 MHz and the bandwidth at 680 kHz. The Airspy R2/mini/SDRplay units have frequency ranges that go up to 1.8 - 2 GHz, and have bandwidths of up to 10 MHz. But this is an SDR designed for DXing or pulling in those weak signals, so wideband operation is not a major concern for that application.

We have a review of a prototype version of the Airspy HF+ that we received earlier in the year available here. It's one of the most impressive low cost SDRs that we've seen to date. (We consider sub $300 USD as low cost, and $20 RTL-SDRs as ultra-low cost). You can also freely test some publicly available Airspy HF+ units that were provided to reviewers and developers over the internet.

Technical specifications

  • HF coverage between 9 kHz .. 31 MHz
  • VHF coverage between 60 .. 260 MHz
  • -140.0 dBm (0.02 µV / 50 ohms at 15MHz) MDS Typ. at 500Hz bandwidth in HF
  • -141.5 dBm MDS Typ. at 500 Hz bandwidth in FM Broadcast Band (60 – 108 MHz)
  • -142.5 dBm MDS Typ. at 500 Hz bandwidth in VHF Aviation Band (118 – 136 MHz)
  • -140.5 dBm MDS Typ. at 500 Hz bandwidth in VHF Commercial Band (136 – 174 MHz)
  • -140.0 dBm MDS Typ. at 500 Hz bandwidth in the upper VHF Band (> 174 MHz)
  • +15 dBm IIP3 on HF at maximum gain
  • +13 dBm IIP3 on VHF at maximum gain
  • 110 dB blocking dynamic range (BDR) in HF
  • 95 dB blocking dynamic range (BDR) in VHF
  • 150+ dB combined selectivity (hardware + software)
  • 120 dB Image Rejection (software)
  • Up to 660 kHz alias and image free output for 768 ksps IQ
  • 18 bit Embedded Digital Down Converter (DDC)
  • 22 bit! Resolution at 3 kHz channel using State of the Art DDC (SDR# and SDR-Console)
  • +10 dBm Maximum RF input
  • 0.5 ppm high precision, low phase noise clock
  • 1 PPB! frequency adjustment capability
  • Very low phase noise PLL (-110 dBc/Hz @ 1kHz separation @ 100 MHz)
  • Best Noise reduction of the market using state of the art algorithms
  • 2 x High Dynamic Range Sigma Delta ADCs @ up to 36 MSPS
  • No Silicon RF switch to introduce IMD in the HF path
  • Routable RF inputs with simple modification
  • Wide Band RF filter bank
  • Tracking RF filters
  • Sharp IF filters with 0.1 dB ripple
  • Smart AGC with real time optimization of the gain distribution
  • All RF inputs are matched to 50 ohms
  • 4 x Programmable GPIO’s
  • No drivers required! 100% Plug-and-play on Windows Vista, Seven, 8, 8.1 and 10
  • Industrial Operating Temperature: -45°C to 85°C
  • Full details at
The Airspy HF+
The Airspy HF+