Category: Reviews

TechMinds: RigExpert Responds to TechMinds’ Review of the FobosSDR

In a previous video released last week, Matt from the TechMinds YouTube channel reviewed the RigExpert FobosSDR. The FobosSDR is an RX-only USB 3.0 device, with a 100 kHz to 6 GHz tuning range, 50 MHz of bandwidth, and 14-bit ADC resolution. It comes in at a price reasonable for its specs, which is US$395 from US resellers and from EU resellers around 495,00 €.

However, while the specs look good on paper, Matt's previous review exposed some severe imaging problems with the device, and noted that lower cost SDRs with similar specs performed much better. Imaging is when strong out of band signals overlap onto other bands, causing issues with receiving signals. This is usually a symptom of incorrect code, poorly thought out design, or poor filtering in hardware.

In the latest video Matt goes through RigExpert's reply to his video review. In the video the reply from RigExpert stresses that only certain sample rates chosen by the user will result in correct performance in terms of imaging. When the correct sampling rate is chosen Matt observes that the imaging is resolved on the HF bands, although it does not help with the broadcast FM band imaging onto the airband in VHF.

RigExpert also stresses that the FobosSDR is not designed to be a high performance HF SDR and that it is designed to excel in the 50 MHz to 6 GHz range only. However, Matt points out that their marketing goes against this statement, as it advertises that FobosSDR has applications in "high performance HF" and "HAM radio".

They also note that the official software for FobosSDR is uSDR, and this should be used for best performance. But in his tests, Matt notes that the uSDR software has poor audio quality and FFT resolution on the waterfall, with no settings found to improve it.

Overall, many of the problems seem to stem from a disconnect between the marketing, documentation, and technical people working on the FobosSDR. It also seems that some of the issues could have been solved with additional or tighter built-in filters. But with the retail cost already in the upper range of this spec bracket, they may have opted for the cheaper option which is to tell users to use external filters if necessary. 

RigExpert Responded To My Fobos SDR Review Video!

TechMinds: A Review of the RigExpert FobosSDR

Earlier this year the Ukrainian company RigExpert released the FobosSDR, and only recently has it become available to most people in the world via global resellers. FobosSDR is an RX-only USB 3.0 device, with a 100 kHz to 6 GHz tuning range, 50 MHz of bandwidth, and 14-bit ADC resolution. Current pricing from US resellers is US$395 and from EU resellers around 495,00 €.

Recently Matt from the TechMinds YouTube channel reviewed the FobosSDR, showing an unboxing, description and review of the hardware. Unfortunately, while the specs on paper look good, Matt notes that the FobosSDR does not perform well.

In the video, Matt starts by testing around the broadcast FM band and shows how the FobosSDR suffers from multiple mirrored signals, even with the gain settings turned right down. He notes that other similarly priced SDRs perform a lot better and that even an RTL-SDR performs better.

Matt then goes on to test the HF bands, noting that there is no gain control available on these bands and that there are also extreme levels of signal mirroring all across the HF band.

Unfortunately, we are starting to see other similar reports about poor performance from the FobosSDR. For example, on arcticdx's blog he also does not recommend the SDR [1][2],

RigExpert Fobos SDR 100KHz To 6GHz SDR Receiver

An Initial Review of the RFNM Software Defined Radio

Last year the RFNM (RF Not Magic) software-defined radio was announced and opened up for pre-orders. RFNM is an SDR based on the new 12-bit LA9310 baseband processor chip, and together with either a 'Granita' or 'Lime' daughter board it is capable of tuning from 10 - 7200 MHz or 5 - 3500 MHz respectively. It is also capable of wide bandwidth - up to 153.6 MHz on a host device like a PC. The RFNM is affordable, costing US$299 for the motherboard, US$179 for the Lime board, and US$249 for the Granita board. Currently, the second production batch is available for preorder.

Recently we received our RFNM order, with both Granita and Lime boards. This is a review of our initial impressions and tests on it. Note that while the RFNM is capable of transmitting, in this review we did not test that capability.

Physical Review

The RFNM motherboard comes as a PCB with a large heatsink on the bottom and a very quiet inline fan.  The daughterboards connect to the motherboard with a board-to-board connector and are secured in place via seven screws. There is another board-to-board connector for a second daughterboard to be connected, but in this review we did not test it. 

On the right side there is a 4-18V DC barrel power jack and USB-A, USB-C, HDMI and Ethernet connectors. There is also a SIM card and SD card slot on the side. On the left of the board are MMCX connectors for external reference clock, and clock out. There are also various header pinouts for PPS OUT/IN, UART, I2C, GPIO and PWM. On the heatsink side there is a JTAG connector, jumpers for resetting the firmware, and pads to solder on an OCXO. 

RFNM Motherboard and Daughterboards
RFNM bottom with heatsink, fan and rubber feet.

The device feels solid but there are a few exposed SMT components on the rear that have the potential to be knocked off with rough handling. All the main connectors are through-hole soldered and will not break off easily. During operation, the heatsink stays warm to the touch, and does not get too hot. The fan blades are exposed but should be safe from fingers and debris being on the bottom.

Initial Firmware Download

The device requires power from a 4 - 18V DC barrel jack and connects to a PC via a USB-C or USB-A port. According to the developer, it requires a 10-15W capable supply. In the tests below we used a 9V 2000mA switch mode supply, and a 12V 3000mA capable linear supply.

The device comes shipped without firmware, and the first setup step involves plugging in an internet-connected ethernet cable to automatically download and install the latest firmware. If you don't have an internet connected ethernet cable, an alternative is to plug in a USB stick with the latest firmware installed on it. The firmware installation took only a couple of minutes and went smoothly.

Initial Tests with SDR++

The easiest way to get something working with the RFNM is to use the custom SDR++ build included on the RFNM itself. When you plug in the RFNM it shows up on your PC as a disk drive, with an SDR++ folder. Getting started is as easy as running that SDR++ exe and clicking Play.

Initially, we encountered an issue where the RFNM wouldn't show up in SDR++, and wouldn't show up as a disk either. However, after flipping the USB-C connector it worked. This is an issue that continued throughout, and sometimes flipping wouldn't even work, but it always connected after a few reconnection attempts, and once the board was connected it was stable.

Lime Daughterboard Tests

We first tested the RFNM with the Lime daughter board. This is a board based on the Lime LMS7002 chip which is the same chip used in the LimeSDR. Here only the IQ output of the Lime chip is used, not the ADCs.

At this point, it's important to note that software support for the RFNM is still in the very early stages and SDR++ currently has no gain controls implemented. SDR++ is third-party software to RFNM so it's not any fault of the RFNM team. (NOTE: In the last few days after having already written this review, there have been several commits to SDR++ regarding RFNM, so this may already be resolved)

However, it is possible to SSH into the Linux OS system running on the RFNM system and change the gain setting through a bash command. To connect to SSH a network-connected ethernet cable needs to be connected to the board (alternatively you can use the UART port on the side of the board with an adapter). Once logged in via SSH we can browse to "/sys/kernel/rfnm_primary/rx0" and edit the value in the 'gain' text file. Then to activate the changes, simply set the value in the 'apply' text file to 1. This allowed us to optimize the gain settings for best reception.

cd /sys/kernel/rfnm_primary/rx0
echo 30 > gain && echo 1 > apply
RFNM with Lime daughterboard on the WiFi bands
RFNM with Lime daughterboard on the WiFi bands
RFNM with Lime daughterboard receiving mobile basestation signals.

With the ability to set the gain, the Lime board works great. Signals are strong in the VHF and UHF bands where sensitivity is approximately -135 dBm, and there is little sign of imaging with appropriate gain settings. In the 2.4 GHz band, the sensitivity remains good at around -130 dBm too. Although the advertised max frequency range is 3500 MHz, we were able to receive up to about  3.85 GHz with reduced sensitivity.

On HF, however, the Lime board performs very poorly. We start to see a drop off at around 50 MHz where the sensitivity is roughly -93 dBm, at 30 MHz about -58 dBm, and 15 MHz about -37 dBm.

Granita Daughterboard Tests

In the second test, we removed the Lime board from the RFNM motherboard and installed the Granita daughterboard. The Granita daughterboard is based on an Arctic Semiconductor 'Granita' chip, an RFFC2071A mixer, and several preselectors. 

Unfortunately, we are very disappointed in the performance of Granita as there is very significant imaging of signals, and this wipes out the ability to cleanly receive almost every band. According to Davide, this problem is a firmware issue with the Arctic Semiconductor Granita chip that can maybe be fixed in the future, but there is no guarantee that it is fixable, as any fix is at the mercy of the Arctic Semiconductor, who don't seem to be very responsive to the issue. Davide (creator of the RFNM) writes:

In the Lime board, the IQ LPF works properly. For granita, it doesn’t work at all, like the -3 dB point of the 20 MHz LPF option is 100 MHz+. The manufacturer of the RFIC kept saying that this is a firmware bug, so I gave them a devkit to replicate, but they never fixed it over the last month. I don’t know at this point if this is a software problem or if they discovered it’s something more.  

We confirmed that adjusting the gain settings on Granita did not help with the imaging problem either.

Heavy imaging experienced with Granita (compare to the true spectrum shown previously with the Lime board).
Heavy imaging was experienced with Granita (compare this to the true WiFi spectrum shown previously with the Lime board).

We also noticed that Granita was picking up or internally generating significant noise spikes. We initially assumed this was from the 9V SMPS, but even with a 12V linear power supply similar spikes were seen. The same noise was not visible with the Lime board.

Granita unknown noise spikes
Granita unknown noise spikes

Sensitivity in the bands above 600 MHz was good, at around -135 dBm. Below 600 MHz where the mixer is used, sensitivity was a bit poorer at around -123 dBm. The highest frequency we could receive was around 5900, but after about 5 GHz signals started to become very weak. The Granita board is advertised as receiving 10 - 6300 MHz, however, the documentation notes that the current batch is only capable of tuning to around 5 GHz. They note that the next batch should reach 6.3 GHz.

The Granita board was able to receive broadcast AM, shortwave, and ham frequencies with good signal strength. At 15 - 50 MHz the sensitivity is roughly -115 dBm.

Granita receiving the 0 - 15 MHz.

At the time of this review, we cannot recommend that anyone purchase the Granita board unless they are working in a very controlled environment. We hope that in the near future the IQ LPF problem can be fixed to make the Granita board usable.

GNU Radio Tests (Windows)

The file drive on the RFNM also comes with a Soapy driver available. We copied the RFNMSupport.dll file from the RFNM drive over to our GNU Radio radioconda installation's SoapySDR folder at C:\Users\proje\radioconda\Library\lib\SoapySDR\modules0.8. Then we opened GNU Radio and opened the gnuradio_example.grc file. This brings up a FFT and waterfall display like in SDR++ and with the Gain controls exposed. With the gain controls exposed the Lime + RFNM combination works great.

The daughterboards also have built-in antennas that can be switched in or out using a drop down box in the GNU Radio UI. The built-in antenna on both boards is a Pulse W3796 which has an advertised range of 698 MHz to 2.7 GHz. While the built-in antenna works well for nearby bench reception, we preferred to still use our outdoor dipole antenna for better reception.

153.6 MHz Bandwidth Mode

It's possible to set the RFNM to provide even more bandwidth by connecting two USB cables to the PC. That gives us up to 153.6 MHz of 12-bit data. Enabling this mode requires editing a variable via the terminal

echo 153 > /sys/class/i2c-dev/i2c-0/device/0-0050/rfnm_set_dcs_freq && reboot

Once this was set we were able to edit the samp_rate block in the GNU Radio example, and set it to 153.6 MHz. At the moment the current SDR++ does not support the 153.6 MHz sample rate.

RFNM Running 153.6MHz in GNU Radio.

Conclusion

It's clear that the RFNM is cutting edge, yet affordable, and has great potential and excellent features and specifications. The built-in processor, DSP and GPU capabilities on the RFNM could be game changers in the near future. However, at the time of this review, the software support is still in its very early stages, documentation is lacking, and it's not yet recommended for mainstream users who just want to plug in and get started with an SDR for listening and decoding signals.

Regarding the Granita daughterboard, we would probably hold off on purchasing this until there is some clarification on the IQ LPF fix.

If you are an advanced SDR user who is comfortable with GNU Radio, Linux and advanced applications like setting up and running mobile basestations, then the RFNM may be a good choice. We are looking forward to applications that make use of the onboard DSP and GPU capabilities.

RasPad 3.0 Review: Building a Portable Raspberry Pi 4 Tablet with Built in RTL-SDR

The Raspad 3.0 is a portable tablet enclosure for the Raspberry Pi 4B. It comes with a high resolution 1280 x 800 10.1 inch touch LCD screen, built in speakers, built in battery and a plastic enclosure that houses the LCD driver board and Raspberry Pi. Accessible on the side of the enclosure are the USB, HDMI, ethernet and audio ports which connect via the LCD driver board. They also include an accelerometer shim which allows the screen to autorotate.

The Raspad 3.0 is available on Amazon USA for $259, or directly via their website for $219 with free worldwide shipping.

A few months ago SunFounder, the company behind the RasPad 3.0 reached out to us and asked if we wanted to review the product with a free sample. Normally we don't review products unrelated to SDR like this, but given the amount of RTL-SDR software available for the Raspberry Pi, and what appeared to be sufficient internal space, we were curious if there was a way to turn this into a portable RTL-SDR tablet...

The RasPad 3.0

Unboxing

A few weeks ago the Raspad 3.0 arrived, well packed and with all the advertised components. Note that the Raspad 3.0 does not come with a Raspberry Pi 4B, this is something you will need to provide on your own.

Inside was a mains power cable, 15V DC power brick, two HDMI jumpers, a USB jumper, accelerometer shim, SD card ribbon, small 5V fan, heatsinks for the Pi, screwdriver and mounting screws, a manual and the RasPad LCD screen itself.  

The Raspad 3.0 Box and Unboxing

Assembly

Assembly is straight forward. You unscrew the enclosure using the provided screw driver, insert the Pi 4B, screw it down, connect all the cables from the Pi to the LCD driver board and SD card slot, then reassemble. After inserting the Raspberry Pi 4B and attaching all the cables this is what the inside looks like.

Inside an assembled RasPad 3.0

Now we could have reassembled the enclosure here, but we wanted this to be a portable RTL-SDR tablet, with the RTL-SDR and an SMA antenna port built in. 

It turns out that the best way to fit in an RTL-SDR Blog V3 is to directly connect it to the spare USB port on the Pi. You might also consider using a micro style RTL-SDR which would fit more easily, but those do tend to get quite hot in a small package, and can be quite bad with internal noise. Also good shielding is probably quite critical in this application due to the dongles proximity with the LCD driver board which could be an RFI source.

The SMA side of the RTL-SDR Blog V3 rests nicely on top of the USB port of the LCD driver board providing some stability, and when the bottom lid is assembled there is plenty of clearance and no squashing.

Next we drilled a hole on the rear wall of the bottom half of the enclosure for the SMA female port, and tightened the SMA connector down with a nut. In the future we'll be upgrading this to a long barrel style SMA female connector, as a regular SMA female connector is a bit short. Then a short well shielded SS405 coax cable was used to connect to the RTL-SDR dongle.

RasPad 3.0 with RTL-SDR Blog V3 Inside
Raspad 3.0 with SMA port hacked in

ProTip: Do take care to remember to remove the SD card when disassembling the RasPad! If you don't you'll end up with the SDcard slot getting ripped from it's ground traces. This happened to us, but we were able to easily solder it back on. There is a sticker on the backside of the enclosure warning about this.

Software & Testing

SunFounder provide a custom Raspbian distribution designed specially for the RasPad. However, we decided to instead install the DragonOS Pi64 Distro which is an Ubuntu distribution for the Raspberry Pi 4B that has many built in SDR programs. We burnt the image to a SD card, inserted it on the side, plugged the Raspad in to the power connector, and held the power button down for a few seconds to turn it on. Despite a few initial error messages saying it cannot enable the USB ports, everything eventually booted just fine.

We then plugged in a cable going to one of our multipurpose dipole antennas mounted just outside the office window, and tested both SDR++ and GQRX. In both cases we were immediately able to connect to the RTL-SDR and receive signals with signal strength equivalent to that received by our desktop PC, indicating that LCD interference was not a problem.

The resolution of the screen is high enough and images and text are clear. The screen is also decently bright, and brightness can be adjusted using the buttons on the side.

RasPad 3.0 with built in RTL-SDR running SDR++ and GQRX

DragonOS Tablet Compatibility Issues & Fixes

As DragonOS is not designed for a tablet setup, there were a few bugs. It should be noted however that these issues are not a reflection on the Raspad hardware, as obviously the official Raspad OS will not have these issues as it's designed specifically for tablet use.

We initially had no sound in SDR++ from the built in speakers. After some troubleshooting we managed to get sound by disabling the headphone jack in the audio mixer settings, which appears to be the default output in DragonOS. To do this, click on the speaker icon on the bottom right task bar and click on Mixer. Then go to the Configuration tab and uncheck the second Built-in Audio entry. Close it, and open SDR++.

Disabling the headphone jack to get the built in speakers working.

In DragonOS the touch screen works fine, although it is difficult to click on small buttons. There is no onscreen keyboard available by default. We couldn't find a way to enable a tablet mode in DragonOS, so instead opted to install an onscreen keyboard called 'onboard' via 'sudo apt install onboard'. The accelerometer is also not enabled in DragonOS. We did not attempt to fix this as we have no need for screen rotation.

Interference

LCD screens are well known to be sources of RF interference, and putting an SDR in close proximity to one could result in the spectrum being very noisy. However, without an antenna connected we did not notice any interference across the spectrum from the LCD screen. It appears that the LCD RFI noise levels are not too bad, and the shielding on the RTL-SDR Blog V3 and the coax jumper cable is good enough to prevent any being received. When an antenna with a few meters of coax was connected (such as a magwhip or our portable dipole) we also didn't notice any LCD interference. 

However, when a SMA telescopic antenna was connected directly to the SMA port we did start noticing the telltale spikes across the spectrum that are typically generated from LCD screens. If the magwhip or dipole was also moved within 2-3cm of the LCD screen, we also saw these interference spikes appear.

LCD Screen interference appears with a telescopic whip connected directly to the SMA port.

So it would be recommended to use a magwhip or dipole that has a coax run that can sit a few centimeters away from the screen. This limits the handheld ability of the RasPad a little, but you'd probably want a magwhip, dipole or other antenna over a directly connected telescopic whip for better reception anyway. 

Battery Life

We tested a worst case scenario, with the RasPad running the RTL-SDR and SDR++ continuously at the brightest screen setting. With this test the battery lasted 2 hours and 10 minutes from a full charge. Presumably if the screen was dimmed and turned off for some periods of time, it would easily last 3-4 hours.

Portability

The total weight of the Raspad including our mods is just under 1 kg (2.2 lbs). About double the weight of a modern tablet, but still light enough to be easily carried.

Other Notes

The small 5V fan provided in the kit is unfortunately a bit noisy, and it's cooling ability is seems limited. We've seen these small fans on other Raspberry Pi cooling accessories and found that they are next to useless at cooling. It would be good to see a slightly larger and quieter fan, or perhaps a better passive cooling heatsink.

The power brick output is 15V, 2A. Ideally we would be able to charge the RasPad via a car/boat 12V connection as well. We're awaiting a response to see if this is possible. Update: Unfortunately 12V seems to be a no-go, quoting SunFounder "the 12v supply may cause the Raspad to fail to charge, as the minimum is 15v".

Conclusion

The RasPad 3.0 in our opinion overall a good product. It allows you to easily go portable with your Raspberry Pi 4. While it was designed for other projects, there was just enough hackability left in it for us to fit a RTL-SDR Blog V3 and antenna port into the enclosure, yielding us a clean and portable SDR solution.

With at least 2 hours of battery life when running an RTL-SDR and software, we can easily see this being taken out in the field for spectrum analysis, decoding with rtl_433, or for portable listening to the airband, trunking etc. However, some customization of DragonOS or the RaspadOS is going to be needed to get the most out of the touchscreen.

There are also alternative LCD screen products designed for the Raspberry Pi where you sit the Raspberry Pi on the back of the screen. But it's unclear if there would be enough space inside to fit an RTL-SDR, and not to mention the lack of a battery. We also previously reviewed the Elecrow CrowPi which is somewhat similar, but a lot more clunky if you're just after a pick up and go portable SDR tablet solution. There are also higher end higher priced laptop style enclosure products for the Pi, like the Pi-Top but we're unsure if they're likely to fit the RTL-SDR internally this easily.

Disclaimer: We do not receive any compensation for this review apart from a free Raspad 3.0.

We also recently came across this review from German YouTuber Manuel Lausmann who installed and ran SDR++ on the Raspad with an SDRplay RSP SDR. 

SDR ++ mit dem RASPAD 3 -Raspberry PI 4-

Testing out the New Airspy HF+ Preselector

The Airspy team have recently been working on a preselector retrofit product for their HF+. The Airspy HF+ already has excellent dynamic range and sensitivity, but by adding a preselector they seek to improve performance enough to claim that the HF+ is as good as or even better than much more pricey SDRs like the Perseus by achieving dynamic range figures of more than 105 dBm.

A preselector is a filter or bank of filters that attenuates out of band signals. This is useful as radios can desensitize if an unwanted signal comes in too strongly. For example, if you are tuned to the 20m band, but there is a very strong MW signal, the SNR of your desired 20m band signal might be reduced. Radios with a natural high dynamic range design like the Airspy HF+ are less affected by this problem, but for the strongest of signals use of a preselector can still help.

The Airspy HF+ preselector needs to be soldered directly onto the HF+'s PCB, and once installed it automatically switches bands using GPIO expansion ports controlled automatically via tuning in SDR#, so no external switching is required.

The expected pricing of the HF+ preselector is US$49, and it will be ready for sale in a few weeks.

Measurements

We received a prototype of the filter a few days ago and have been testing it out. From measurements on a VNA, we found that the preselector features four bands of operation:

  • 0 - 5.2 MHz
  • 5.2 - 10 MHz
  • 10 - 17 MHz
  • 17 - 30 MHz

Airspy have also provided us with a block diagram schematic which we show below.

HF+ Preselector Schematic
HF+ Preselector Schematic

Insertion loss appears to be mostly below 3 dB with fairly steep skirts especially on the lower side. The top three filters do an excellent job at blocking out the broadcast AM band. Below are some VNA plots that show the filter responses.

Installation

The preselector comes in a small 3.2 x 1.7 cm sized PCB that is fully covered with a metal shielding can. To install it you need to carefully solder it onto the HF+ PCB. This can be a little tricky since the pads are so small, but if you're experienced with soldering it shouldn't be an issue.

  • First you need to open the HF+ and remove R3 from the HF+ PCB, which is a zero ohm resistor.
  • The preselector PCB can then be positioned and the two IN and OUT pads soldered in place.
  • Then you'll also need to connect the power and 2x GPIO lines to the preselector using wires.
  • Now you need to bridge the two shielding CANs with a thick bit of wire. We simply used two cuts of copper solder braid to do this.
  • Finally is also recommended to update the HF+ firmware to the latest version and download the latest version of SDR#.

Once soldered in place the preselector is ready to use, and the HF+ cover can be put back on. It is expected that the commercially sold versions of the preselector will come with detailed installation instructions. 

In the first photo below we removed the shield to see what was inside, and the second photo shows it installed on the HF+ PCB.

Using it on a RTL-SDR V3

Whilst the preselector is designed for the Airspy HF+, there's no reason why it couldn't also be retrofitted onto other SDRs, such as our RTL-SDR V3, for use in improving direct sampling mode performance.

The V3 has spare GPIO ports that can be used to control the filter, and 5V for powering the filter could be tapped off the PCB as well. Currently we're considering making a breakout PCB for the filter than might aide with this.

We did a quick test with the preselector connected to the RTL-SDR V3 running in direct sampling mode, and as expected performance is much better, especially above 5 MHz once the second filter kicks in. This is because the second, third and fourth filters all heavily attenuate the MW broadcast AM band, which is the main source of overload issues on HF.

The following screenshots show how much the filter was able to reduce the signal strength of AM broadcast when the second 5.2 - 10 MHz filter was turned on. This reduction was enough to prevent overload on all the higher bands.

Preselector OFF
Preselector ON
Preselector OFF
Preselector ON
Preselector OFF Preselector ON Preselector OFF Preselector ON

HF+ Results

For the HF+ we tested by injecting a strong signal into two HF+ SDRs, one with the filter installed and the other without. The HF+ with the filter was routinely able to withstand much higher signal powers without any signs of overload occurring, and no degradation due to insertion loss was observed.

The screenshots below show an experiment with a weak desired signal injected at 14.2 MHz, and a strong unwanted signal being injected at 1.5 MHz. With the unwanted signal at 5 dBm, the filtered HF+ showed no signs of overload, whilst the unfiltered HF+ had the AGC kick in to increase the front end attenuation, reducing the signal strength by about 20 dB and raising the noise floor.

Filtered HF+
Unfiltered HF+
Filtered HF+ Unfiltered HF+

Other Reviews

Other reviewers have also received the preselector and have been testing it. Fenu radio has uploaded a short review, and plans to write more in the future. He's also made his HF+ with preselector available for public use via SpyServer (details in his post). In the video below Leif SM5BSZ reviews the preselector and runs through several tests while comparing it against the Perseus. His results seem to show that the Persues gets a +25 dBm IP3, whilst the HF+ with the latest firmware and preselector is able to obtain a respectable +10 dBm IP3. 

Conclusion

For most people, the dynamic range of the HF+ is probably already more than enough, but if you are receiving very strong signals, the preselector can help get you get more performance out of the HF+. Of course the preselector cannot help if you have strong signals within the filter bands.

If you're looking to get the most out of your HF+ then the filter at only $49 is a pretty good deal. Just take note that you'll need to open the HF+ and be comfortable with soldering onto the PCB. 

TechMinds: RigExpert Responds to TechMinds’ Review of the FobosSDR

In a previous video released last week, Matt from the TechMinds YouTube channel reviewed the RigExpert FobosSDR. The FobosSDR is an RX-only USB 3.0 device, with a 100 kHz to 6 GHz tuning range, 50 MHz of bandwidth, and 14-bit ADC resolution. It comes in at a price reasonable for its specs, which is US$395 from US resellers and from EU resellers around 495,00 €.

However, while the specs look good on paper, Matt's previous review exposed some severe imaging problems with the device, and noted that lower cost SDRs with similar specs performed much better. Imaging is when strong out of band signals overlap onto other bands, causing issues with receiving signals. This is usually a symptom of incorrect code, poorly thought out design, or poor filtering in hardware.

In the latest video Matt goes through RigExpert's reply to his video review. In the video the reply from RigExpert stresses that only certain sample rates chosen by the user will result in correct performance in terms of imaging. When the correct sampling rate is chosen Matt observes that the imaging is resolved on the HF bands, although it does not help with the broadcast FM band imaging onto the airband in VHF.

RigExpert also stresses that the FobosSDR is not designed to be a high performance HF SDR and that it is designed to excel in the 50 MHz to 6 GHz range only. However, Matt points out that their marketing goes against this statement, as it advertises that FobosSDR has applications in "high performance HF" and "HAM radio".

They also note that the official software for FobosSDR is uSDR, and this should be used for best performance. But in his tests, Matt notes that the uSDR software has poor audio quality and FFT resolution on the waterfall, with no settings found to improve it.

Overall, many of the problems seem to stem from a disconnect between the marketing, documentation, and technical people working on the FobosSDR. It also seems that some of the issues could have been solved with additional or tighter built-in filters. But with the retail cost already in the upper range of this spec bracket, they may have opted for the cheaper option which is to tell users to use external filters if necessary. 

RigExpert Responded To My Fobos SDR Review Video!

TechMinds: A Review of the RigExpert FobosSDR

Earlier this year the Ukrainian company RigExpert released the FobosSDR, and only recently has it become available to most people in the world via global resellers. FobosSDR is an RX-only USB 3.0 device, with a 100 kHz to 6 GHz tuning range, 50 MHz of bandwidth, and 14-bit ADC resolution. Current pricing from US resellers is US$395 and from EU resellers around 495,00 €.

Recently Matt from the TechMinds YouTube channel reviewed the FobosSDR, showing an unboxing, description and review of the hardware. Unfortunately, while the specs on paper look good, Matt notes that the FobosSDR does not perform well.

In the video, Matt starts by testing around the broadcast FM band and shows how the FobosSDR suffers from multiple mirrored signals, even with the gain settings turned right down. He notes that other similarly priced SDRs perform a lot better and that even an RTL-SDR performs better.

Matt then goes on to test the HF bands, noting that there is no gain control available on these bands and that there are also extreme levels of signal mirroring all across the HF band.

Unfortunately, we are starting to see other similar reports about poor performance from the FobosSDR. For example, on arcticdx's blog he also does not recommend the SDR [1][2],

RigExpert Fobos SDR 100KHz To 6GHz SDR Receiver

An Initial Review of the RFNM Software Defined Radio

Last year the RFNM (RF Not Magic) software-defined radio was announced and opened up for pre-orders. RFNM is an SDR based on the new 12-bit LA9310 baseband processor chip, and together with either a 'Granita' or 'Lime' daughter board it is capable of tuning from 10 - 7200 MHz or 5 - 3500 MHz respectively. It is also capable of wide bandwidth - up to 153.6 MHz on a host device like a PC. The RFNM is affordable, costing US$299 for the motherboard, US$179 for the Lime board, and US$249 for the Granita board. Currently, the second production batch is available for preorder.

Recently we received our RFNM order, with both Granita and Lime boards. This is a review of our initial impressions and tests on it. Note that while the RFNM is capable of transmitting, in this review we did not test that capability.

Physical Review

The RFNM motherboard comes as a PCB with a large heatsink on the bottom and a very quiet inline fan.  The daughterboards connect to the motherboard with a board-to-board connector and are secured in place via seven screws. There is another board-to-board connector for a second daughterboard to be connected, but in this review we did not test it. 

On the right side there is a 4-18V DC barrel power jack and USB-A, USB-C, HDMI and Ethernet connectors. There is also a SIM card and SD card slot on the side. On the left of the board are MMCX connectors for external reference clock, and clock out. There are also various header pinouts for PPS OUT/IN, UART, I2C, GPIO and PWM. On the heatsink side there is a JTAG connector, jumpers for resetting the firmware, and pads to solder on an OCXO. 

RFNM Motherboard and Daughterboards
RFNM bottom with heatsink, fan and rubber feet.

The device feels solid but there are a few exposed SMT components on the rear that have the potential to be knocked off with rough handling. All the main connectors are through-hole soldered and will not break off easily. During operation, the heatsink stays warm to the touch, and does not get too hot. The fan blades are exposed but should be safe from fingers and debris being on the bottom.

Initial Firmware Download

The device requires power from a 4 - 18V DC barrel jack and connects to a PC via a USB-C or USB-A port. According to the developer, it requires a 10-15W capable supply. In the tests below we used a 9V 2000mA switch mode supply, and a 12V 3000mA capable linear supply.

The device comes shipped without firmware, and the first setup step involves plugging in an internet-connected ethernet cable to automatically download and install the latest firmware. If you don't have an internet connected ethernet cable, an alternative is to plug in a USB stick with the latest firmware installed on it. The firmware installation took only a couple of minutes and went smoothly.

Initial Tests with SDR++

The easiest way to get something working with the RFNM is to use the custom SDR++ build included on the RFNM itself. When you plug in the RFNM it shows up on your PC as a disk drive, with an SDR++ folder. Getting started is as easy as running that SDR++ exe and clicking Play.

Initially, we encountered an issue where the RFNM wouldn't show up in SDR++, and wouldn't show up as a disk either. However, after flipping the USB-C connector it worked. This is an issue that continued throughout, and sometimes flipping wouldn't even work, but it always connected after a few reconnection attempts, and once the board was connected it was stable.

Lime Daughterboard Tests

We first tested the RFNM with the Lime daughter board. This is a board based on the Lime LMS7002 chip which is the same chip used in the LimeSDR. Here only the IQ output of the Lime chip is used, not the ADCs.

At this point, it's important to note that software support for the RFNM is still in the very early stages and SDR++ currently has no gain controls implemented. SDR++ is third-party software to RFNM so it's not any fault of the RFNM team. (NOTE: In the last few days after having already written this review, there have been several commits to SDR++ regarding RFNM, so this may already be resolved)

However, it is possible to SSH into the Linux OS system running on the RFNM system and change the gain setting through a bash command. To connect to SSH a network-connected ethernet cable needs to be connected to the board (alternatively you can use the UART port on the side of the board with an adapter). Once logged in via SSH we can browse to "/sys/kernel/rfnm_primary/rx0" and edit the value in the 'gain' text file. Then to activate the changes, simply set the value in the 'apply' text file to 1. This allowed us to optimize the gain settings for best reception.

cd /sys/kernel/rfnm_primary/rx0
echo 30 > gain && echo 1 > apply
RFNM with Lime daughterboard on the WiFi bands
RFNM with Lime daughterboard on the WiFi bands
RFNM with Lime daughterboard receiving mobile basestation signals.

With the ability to set the gain, the Lime board works great. Signals are strong in the VHF and UHF bands where sensitivity is approximately -135 dBm, and there is little sign of imaging with appropriate gain settings. In the 2.4 GHz band, the sensitivity remains good at around -130 dBm too. Although the advertised max frequency range is 3500 MHz, we were able to receive up to about  3.85 GHz with reduced sensitivity.

On HF, however, the Lime board performs very poorly. We start to see a drop off at around 50 MHz where the sensitivity is roughly -93 dBm, at 30 MHz about -58 dBm, and 15 MHz about -37 dBm.

Granita Daughterboard Tests

In the second test, we removed the Lime board from the RFNM motherboard and installed the Granita daughterboard. The Granita daughterboard is based on an Arctic Semiconductor 'Granita' chip, an RFFC2071A mixer, and several preselectors. 

Unfortunately, we are very disappointed in the performance of Granita as there is very significant imaging of signals, and this wipes out the ability to cleanly receive almost every band. According to Davide, this problem is a firmware issue with the Arctic Semiconductor Granita chip that can maybe be fixed in the future, but there is no guarantee that it is fixable, as any fix is at the mercy of the Arctic Semiconductor, who don't seem to be very responsive to the issue. Davide (creator of the RFNM) writes:

In the Lime board, the IQ LPF works properly. For granita, it doesn’t work at all, like the -3 dB point of the 20 MHz LPF option is 100 MHz+. The manufacturer of the RFIC kept saying that this is a firmware bug, so I gave them a devkit to replicate, but they never fixed it over the last month. I don’t know at this point if this is a software problem or if they discovered it’s something more.  

We confirmed that adjusting the gain settings on Granita did not help with the imaging problem either.

Heavy imaging experienced with Granita (compare to the true spectrum shown previously with the Lime board).
Heavy imaging was experienced with Granita (compare this to the true WiFi spectrum shown previously with the Lime board).

We also noticed that Granita was picking up or internally generating significant noise spikes. We initially assumed this was from the 9V SMPS, but even with a 12V linear power supply similar spikes were seen. The same noise was not visible with the Lime board.

Granita unknown noise spikes
Granita unknown noise spikes

Sensitivity in the bands above 600 MHz was good, at around -135 dBm. Below 600 MHz where the mixer is used, sensitivity was a bit poorer at around -123 dBm. The highest frequency we could receive was around 5900, but after about 5 GHz signals started to become very weak. The Granita board is advertised as receiving 10 - 6300 MHz, however, the documentation notes that the current batch is only capable of tuning to around 5 GHz. They note that the next batch should reach 6.3 GHz.

The Granita board was able to receive broadcast AM, shortwave, and ham frequencies with good signal strength. At 15 - 50 MHz the sensitivity is roughly -115 dBm.

Granita receiving the 0 - 15 MHz.

At the time of this review, we cannot recommend that anyone purchase the Granita board unless they are working in a very controlled environment. We hope that in the near future the IQ LPF problem can be fixed to make the Granita board usable.

GNU Radio Tests (Windows)

The file drive on the RFNM also comes with a Soapy driver available. We copied the RFNMSupport.dll file from the RFNM drive over to our GNU Radio radioconda installation's SoapySDR folder at C:\Users\proje\radioconda\Library\lib\SoapySDR\modules0.8. Then we opened GNU Radio and opened the gnuradio_example.grc file. This brings up a FFT and waterfall display like in SDR++ and with the Gain controls exposed. With the gain controls exposed the Lime + RFNM combination works great.

The daughterboards also have built-in antennas that can be switched in or out using a drop down box in the GNU Radio UI. The built-in antenna on both boards is a Pulse W3796 which has an advertised range of 698 MHz to 2.7 GHz. While the built-in antenna works well for nearby bench reception, we preferred to still use our outdoor dipole antenna for better reception.

153.6 MHz Bandwidth Mode

It's possible to set the RFNM to provide even more bandwidth by connecting two USB cables to the PC. That gives us up to 153.6 MHz of 12-bit data. Enabling this mode requires editing a variable via the terminal

echo 153 > /sys/class/i2c-dev/i2c-0/device/0-0050/rfnm_set_dcs_freq && reboot

Once this was set we were able to edit the samp_rate block in the GNU Radio example, and set it to 153.6 MHz. At the moment the current SDR++ does not support the 153.6 MHz sample rate.

RFNM Running 153.6MHz in GNU Radio.

Conclusion

It's clear that the RFNM is cutting edge, yet affordable, and has great potential and excellent features and specifications. The built-in processor, DSP and GPU capabilities on the RFNM could be game changers in the near future. However, at the time of this review, the software support is still in its very early stages, documentation is lacking, and it's not yet recommended for mainstream users who just want to plug in and get started with an SDR for listening and decoding signals.

Regarding the Granita daughterboard, we would probably hold off on purchasing this until there is some clarification on the IQ LPF fix.

If you are an advanced SDR user who is comfortable with GNU Radio, Linux and advanced applications like setting up and running mobile basestations, then the RFNM may be a good choice. We are looking forward to applications that make use of the onboard DSP and GPU capabilities.

RasPad 3.0 Review: Building a Portable Raspberry Pi 4 Tablet with Built in RTL-SDR

The Raspad 3.0 is a portable tablet enclosure for the Raspberry Pi 4B. It comes with a high resolution 1280 x 800 10.1 inch touch LCD screen, built in speakers, built in battery and a plastic enclosure that houses the LCD driver board and Raspberry Pi. Accessible on the side of the enclosure are the USB, HDMI, ethernet and audio ports which connect via the LCD driver board. They also include an accelerometer shim which allows the screen to autorotate.

The Raspad 3.0 is available on Amazon USA for $259, or directly via their website for $219 with free worldwide shipping.

A few months ago SunFounder, the company behind the RasPad 3.0 reached out to us and asked if we wanted to review the product with a free sample. Normally we don't review products unrelated to SDR like this, but given the amount of RTL-SDR software available for the Raspberry Pi, and what appeared to be sufficient internal space, we were curious if there was a way to turn this into a portable RTL-SDR tablet...

The RasPad 3.0

Unboxing

A few weeks ago the Raspad 3.0 arrived, well packed and with all the advertised components. Note that the Raspad 3.0 does not come with a Raspberry Pi 4B, this is something you will need to provide on your own.

Inside was a mains power cable, 15V DC power brick, two HDMI jumpers, a USB jumper, accelerometer shim, SD card ribbon, small 5V fan, heatsinks for the Pi, screwdriver and mounting screws, a manual and the RasPad LCD screen itself.  

The Raspad 3.0 Box and Unboxing

Assembly

Assembly is straight forward. You unscrew the enclosure using the provided screw driver, insert the Pi 4B, screw it down, connect all the cables from the Pi to the LCD driver board and SD card slot, then reassemble. After inserting the Raspberry Pi 4B and attaching all the cables this is what the inside looks like.

Inside an assembled RasPad 3.0

Now we could have reassembled the enclosure here, but we wanted this to be a portable RTL-SDR tablet, with the RTL-SDR and an SMA antenna port built in. 

It turns out that the best way to fit in an RTL-SDR Blog V3 is to directly connect it to the spare USB port on the Pi. You might also consider using a micro style RTL-SDR which would fit more easily, but those do tend to get quite hot in a small package, and can be quite bad with internal noise. Also good shielding is probably quite critical in this application due to the dongles proximity with the LCD driver board which could be an RFI source.

The SMA side of the RTL-SDR Blog V3 rests nicely on top of the USB port of the LCD driver board providing some stability, and when the bottom lid is assembled there is plenty of clearance and no squashing.

Next we drilled a hole on the rear wall of the bottom half of the enclosure for the SMA female port, and tightened the SMA connector down with a nut. In the future we'll be upgrading this to a long barrel style SMA female connector, as a regular SMA female connector is a bit short. Then a short well shielded SS405 coax cable was used to connect to the RTL-SDR dongle.

RasPad 3.0 with RTL-SDR Blog V3 Inside
Raspad 3.0 with SMA port hacked in

ProTip: Do take care to remember to remove the SD card when disassembling the RasPad! If you don't you'll end up with the SDcard slot getting ripped from it's ground traces. This happened to us, but we were able to easily solder it back on. There is a sticker on the backside of the enclosure warning about this.

Software & Testing

SunFounder provide a custom Raspbian distribution designed specially for the RasPad. However, we decided to instead install the DragonOS Pi64 Distro which is an Ubuntu distribution for the Raspberry Pi 4B that has many built in SDR programs. We burnt the image to a SD card, inserted it on the side, plugged the Raspad in to the power connector, and held the power button down for a few seconds to turn it on. Despite a few initial error messages saying it cannot enable the USB ports, everything eventually booted just fine.

We then plugged in a cable going to one of our multipurpose dipole antennas mounted just outside the office window, and tested both SDR++ and GQRX. In both cases we were immediately able to connect to the RTL-SDR and receive signals with signal strength equivalent to that received by our desktop PC, indicating that LCD interference was not a problem.

The resolution of the screen is high enough and images and text are clear. The screen is also decently bright, and brightness can be adjusted using the buttons on the side.

RasPad 3.0 with built in RTL-SDR running SDR++ and GQRX

DragonOS Tablet Compatibility Issues & Fixes

As DragonOS is not designed for a tablet setup, there were a few bugs. It should be noted however that these issues are not a reflection on the Raspad hardware, as obviously the official Raspad OS will not have these issues as it's designed specifically for tablet use.

We initially had no sound in SDR++ from the built in speakers. After some troubleshooting we managed to get sound by disabling the headphone jack in the audio mixer settings, which appears to be the default output in DragonOS. To do this, click on the speaker icon on the bottom right task bar and click on Mixer. Then go to the Configuration tab and uncheck the second Built-in Audio entry. Close it, and open SDR++.

Disabling the headphone jack to get the built in speakers working.

In DragonOS the touch screen works fine, although it is difficult to click on small buttons. There is no onscreen keyboard available by default. We couldn't find a way to enable a tablet mode in DragonOS, so instead opted to install an onscreen keyboard called 'onboard' via 'sudo apt install onboard'. The accelerometer is also not enabled in DragonOS. We did not attempt to fix this as we have no need for screen rotation.

Interference

LCD screens are well known to be sources of RF interference, and putting an SDR in close proximity to one could result in the spectrum being very noisy. However, without an antenna connected we did not notice any interference across the spectrum from the LCD screen. It appears that the LCD RFI noise levels are not too bad, and the shielding on the RTL-SDR Blog V3 and the coax jumper cable is good enough to prevent any being received. When an antenna with a few meters of coax was connected (such as a magwhip or our portable dipole) we also didn't notice any LCD interference. 

However, when a SMA telescopic antenna was connected directly to the SMA port we did start noticing the telltale spikes across the spectrum that are typically generated from LCD screens. If the magwhip or dipole was also moved within 2-3cm of the LCD screen, we also saw these interference spikes appear.

LCD Screen interference appears with a telescopic whip connected directly to the SMA port.

So it would be recommended to use a magwhip or dipole that has a coax run that can sit a few centimeters away from the screen. This limits the handheld ability of the RasPad a little, but you'd probably want a magwhip, dipole or other antenna over a directly connected telescopic whip for better reception anyway. 

Battery Life

We tested a worst case scenario, with the RasPad running the RTL-SDR and SDR++ continuously at the brightest screen setting. With this test the battery lasted 2 hours and 10 minutes from a full charge. Presumably if the screen was dimmed and turned off for some periods of time, it would easily last 3-4 hours.

Portability

The total weight of the Raspad including our mods is just under 1 kg (2.2 lbs). About double the weight of a modern tablet, but still light enough to be easily carried.

Other Notes

The small 5V fan provided in the kit is unfortunately a bit noisy, and it's cooling ability is seems limited. We've seen these small fans on other Raspberry Pi cooling accessories and found that they are next to useless at cooling. It would be good to see a slightly larger and quieter fan, or perhaps a better passive cooling heatsink.

The power brick output is 15V, 2A. Ideally we would be able to charge the RasPad via a car/boat 12V connection as well. We're awaiting a response to see if this is possible. Update: Unfortunately 12V seems to be a no-go, quoting SunFounder "the 12v supply may cause the Raspad to fail to charge, as the minimum is 15v".

Conclusion

The RasPad 3.0 in our opinion overall a good product. It allows you to easily go portable with your Raspberry Pi 4. While it was designed for other projects, there was just enough hackability left in it for us to fit a RTL-SDR Blog V3 and antenna port into the enclosure, yielding us a clean and portable SDR solution.

With at least 2 hours of battery life when running an RTL-SDR and software, we can easily see this being taken out in the field for spectrum analysis, decoding with rtl_433, or for portable listening to the airband, trunking etc. However, some customization of DragonOS or the RaspadOS is going to be needed to get the most out of the touchscreen.

There are also alternative LCD screen products designed for the Raspberry Pi where you sit the Raspberry Pi on the back of the screen. But it's unclear if there would be enough space inside to fit an RTL-SDR, and not to mention the lack of a battery. We also previously reviewed the Elecrow CrowPi which is somewhat similar, but a lot more clunky if you're just after a pick up and go portable SDR tablet solution. There are also higher end higher priced laptop style enclosure products for the Pi, like the Pi-Top but we're unsure if they're likely to fit the RTL-SDR internally this easily.

Disclaimer: We do not receive any compensation for this review apart from a free Raspad 3.0.

We also recently came across this review from German YouTuber Manuel Lausmann who installed and ran SDR++ on the Raspad with an SDRplay RSP SDR. 

SDR ++ mit dem RASPAD 3 -Raspberry PI 4-

Testing out the New Airspy HF+ Preselector

The Airspy team have recently been working on a preselector retrofit product for their HF+. The Airspy HF+ already has excellent dynamic range and sensitivity, but by adding a preselector they seek to improve performance enough to claim that the HF+ is as good as or even better than much more pricey SDRs like the Perseus by achieving dynamic range figures of more than 105 dBm.

A preselector is a filter or bank of filters that attenuates out of band signals. This is useful as radios can desensitize if an unwanted signal comes in too strongly. For example, if you are tuned to the 20m band, but there is a very strong MW signal, the SNR of your desired 20m band signal might be reduced. Radios with a natural high dynamic range design like the Airspy HF+ are less affected by this problem, but for the strongest of signals use of a preselector can still help.

The Airspy HF+ preselector needs to be soldered directly onto the HF+'s PCB, and once installed it automatically switches bands using GPIO expansion ports controlled automatically via tuning in SDR#, so no external switching is required.

The expected pricing of the HF+ preselector is US$49, and it will be ready for sale in a few weeks.

Measurements

We received a prototype of the filter a few days ago and have been testing it out. From measurements on a VNA, we found that the preselector features four bands of operation:

  • 0 - 5.2 MHz
  • 5.2 - 10 MHz
  • 10 - 17 MHz
  • 17 - 30 MHz

Airspy have also provided us with a block diagram schematic which we show below.

HF+ Preselector Schematic
HF+ Preselector Schematic

Insertion loss appears to be mostly below 3 dB with fairly steep skirts especially on the lower side. The top three filters do an excellent job at blocking out the broadcast AM band. Below are some VNA plots that show the filter responses.

Installation

The preselector comes in a small 3.2 x 1.7 cm sized PCB that is fully covered with a metal shielding can. To install it you need to carefully solder it onto the HF+ PCB. This can be a little tricky since the pads are so small, but if you're experienced with soldering it shouldn't be an issue.

  • First you need to open the HF+ and remove R3 from the HF+ PCB, which is a zero ohm resistor.
  • The preselector PCB can then be positioned and the two IN and OUT pads soldered in place.
  • Then you'll also need to connect the power and 2x GPIO lines to the preselector using wires.
  • Now you need to bridge the two shielding CANs with a thick bit of wire. We simply used two cuts of copper solder braid to do this.
  • Finally is also recommended to update the HF+ firmware to the latest version and download the latest version of SDR#.

Once soldered in place the preselector is ready to use, and the HF+ cover can be put back on. It is expected that the commercially sold versions of the preselector will come with detailed installation instructions. 

In the first photo below we removed the shield to see what was inside, and the second photo shows it installed on the HF+ PCB.

Using it on a RTL-SDR V3

Whilst the preselector is designed for the Airspy HF+, there's no reason why it couldn't also be retrofitted onto other SDRs, such as our RTL-SDR V3, for use in improving direct sampling mode performance.

The V3 has spare GPIO ports that can be used to control the filter, and 5V for powering the filter could be tapped off the PCB as well. Currently we're considering making a breakout PCB for the filter than might aide with this.

We did a quick test with the preselector connected to the RTL-SDR V3 running in direct sampling mode, and as expected performance is much better, especially above 5 MHz once the second filter kicks in. This is because the second, third and fourth filters all heavily attenuate the MW broadcast AM band, which is the main source of overload issues on HF.

The following screenshots show how much the filter was able to reduce the signal strength of AM broadcast when the second 5.2 - 10 MHz filter was turned on. This reduction was enough to prevent overload on all the higher bands.

Preselector OFF
Preselector ON
Preselector OFF
Preselector ON
Preselector OFF Preselector ON Preselector OFF Preselector ON

HF+ Results

For the HF+ we tested by injecting a strong signal into two HF+ SDRs, one with the filter installed and the other without. The HF+ with the filter was routinely able to withstand much higher signal powers without any signs of overload occurring, and no degradation due to insertion loss was observed.

The screenshots below show an experiment with a weak desired signal injected at 14.2 MHz, and a strong unwanted signal being injected at 1.5 MHz. With the unwanted signal at 5 dBm, the filtered HF+ showed no signs of overload, whilst the unfiltered HF+ had the AGC kick in to increase the front end attenuation, reducing the signal strength by about 20 dB and raising the noise floor.

Filtered HF+
Unfiltered HF+
Filtered HF+ Unfiltered HF+

Other Reviews

Other reviewers have also received the preselector and have been testing it. Fenu radio has uploaded a short review, and plans to write more in the future. He's also made his HF+ with preselector available for public use via SpyServer (details in his post). In the video below Leif SM5BSZ reviews the preselector and runs through several tests while comparing it against the Perseus. His results seem to show that the Persues gets a +25 dBm IP3, whilst the HF+ with the latest firmware and preselector is able to obtain a respectable +10 dBm IP3. 

Conclusion

For most people, the dynamic range of the HF+ is probably already more than enough, but if you are receiving very strong signals, the preselector can help get you get more performance out of the HF+. Of course the preselector cannot help if you have strong signals within the filter bands.

If you're looking to get the most out of your HF+ then the filter at only $49 is a pretty good deal. Just take note that you'll need to open the HF+ and be comfortable with soldering onto the PCB. 

A Review of the HackRF PortaPack (With Havoc Firmware)

The PortaPack is a US$220 add-on for the HackRF software defined radio (HackRF + PortaPack + Accessory Amazon bundle) which allows you to go portable with the HackRF and a battery pack. It features a small touchscreen LCD and an iPod like control wheel that is used to control custom HackRF firmware which includes an audio receiver, several built in digital decoders and transmitters too. With the PortaPack no PC is required to receive or transmit with the HackRF.

Of course as you are fixed to custom firmware, it's not possible to run any software that has already been developed for Windows or Linux systems in the past. The official firmware created by the PortaPack developer Jared Boone has several decoders and transmitters built into it, but the third party 'Havoc' firmware by 'furrtek' is really what you'll want to use with it since it contains many more decoders and transmit options.

As of the time of this post the currently available decoders and transmit options can be seen in the screenshots below. The ones in green are almost fully implemented, the ones in yellow are working with some features missing, and the ones in grey are planned to be implemented in the future. Note that for the transmitter options, there are some there that could really land you in trouble with the law so be very careful to exercise caution and only transmit what you are legally allowed to.

Some screenshots from the HackRF Portapack Havok Firmware
Some screenshots from the HackRF Portapack Havoc Firmware
More Havok firmware screenshots from the GitHub page.
More Havoc firmware screenshots from the GitHub page.

Although the PortaPack was released several years ago we never did a review on it as the firmware was not developed very far beyond listening to audio and implementing a few transmitters. But over time the Havok firmware, as well as the official firmware has been developed further, opening up many new interesting applications for the PortaPack.

Doing a replay attack on a wireless keyfob using the Portapack.
Doing a replay attack on a wireless keyfob using the PortaPack.

Testing the PortaPack with the Havoc Firmware

Capture and Replay

One of the best things about the PortaPack is that it makes capture and replay of wireless signals like those from ISM band remote controls extremely easy. To create a capture we just need to enter the "Capture" menu, set the frequency of the remote key, press the red 'R' Record button and then press the key on the remote. Then stop the recording to save it to the SD Card.

Now you can go into the Replay menu, select the file that you just recorded and hit play. The exact same signal will be transmitted over the air, effectively replacing your remote key.

We tested this using a simple remote alarm system and it worked flawlessly first time. The video below shows how easy the whole process is.

Continue reading

LimeSDR Mini Unboxing and Initial Review

The LimeSDR Mini has now started shipping out to backers, and we received our unit just last week. The LimeSDR Mini is the smaller version of the full sized LimeSDR which was released early last year in 2017. The standard LimeSDR has a frequency range of 100 kHz – 3.8 GHz, bandwidth of up to 61.44 MHz, 12-bit ADC and 2 x 2 RX/TX channels. In comparison the new LimeSDR mini has a slightly restricted frequency range of 10 MHz – 3.5 GHz, and half the maximum bandwidth at 30.72 MHz. The mini also only has 1 x 1 TX/RX channels. The price is however much less coming in at US$139 for the mini and US$299 for the standard LimeSDR.
 
In this post we’ll give a brief unboxing and review of the LimeSDR Mini. If you’re interested take a look at our previous unboxing and initial review of the standard LimeSDR as well.

Unboxing

The LimeSDR Mini came in a small black box inside an anti-static bag. No accessories like antennas are included in the package. The PCB comes without any enclosure, but an enclosure can be ordered as an additional extra. The size of the PCB is similar to an RTL-SDR, but a little wider. The RF sensitive components are covered with a shielding can. Removing the can reveals the main Lime System RF chip, the LMS7002M, as well as several RF transformer matching circuits.
 
One end of the PCB has a standard USB-A connector, whilst the other end has two SMA ports, one for receiving and the other for transmitting.
The LimeSDR Mini
The LimeSDR Mini

 

Continue reading

Video Comparison of the Airspy HF+ and SDRplay RSP1A on the FM Broadcast Band

Frequent reviewer of SDR products Mile Kokotov has just uploaded on his YouTube channel a new video where he compares the Airspy HF+ against the SDRplay RSP1A on FM broadcast reception.

At first Mile compares the two against strong broadcast stations, and then later compares them on weak DX stations surrounded in amongst other strong stations. With the strong stations a difference between the two radios is impossible to detect. But with the weaker stations that are surrounded by strong signals the Airspy HF+ has the edge with it's higher dynamic range and sensitivity.

Mile writes:

In this video I am comparing two popular SDR-Receivers (Airspy HF+ and SDRplay RSP1A) on FM Broadcast Band.

I have made few recordings with every receiver with the same antenna trying to set the best SNR = signal-to-noise ratio.

My intention was to ensure the same conditions for both SDR`s in order to make as fair as possible comparison.

No DSP enhancing on the SDR`s was used.

Antenna was Vertical Dipole.

When receiving signals are strong enough, You should not expect the difference between most receivers to be very obvious!

If you compare one average transceiver (which cost about $ 1000 USD) and top class transceiver which cost ten times more, the difference in receiving average signals will be very small too. Almost negligible! But when you have difficult conditions, the very weak signal between many strong signals, than the better receiver will receive the weak signal readable enough, but cheaper receiver will not. Today it is not a problem to design and produce the sensitive receiver, but it is far more difficult to design and produce high dynamic receiver for reasonable price! The Airspy HF+ and RSP1A are very very good SDR-receivers. They have different customers target and have strong and weak sides. For examle Airspy HF+ has better dynamics in frequency range where it is designed for, but RSP1A, on the other hand, has broadband coverage...

Airspy HF+ vs SDRplay RSP1A Comparison on FM Broadcast Band