Meteor M-N1 Satellite Wakes up from the Dead

RTL-SDR.com reader Happysat recently wrote in with some news. A few days ago a weather satellite image decoding enthusiast from Argentina was waiting for a pass of the Russian Meteor M-N2 satellite when he discovered a strong LRPT signal at 137.1 MHz, even though the Meteor M-N2 satellite was not in sight yet. It turns out that the signal was coming from the old Meteor M-N1 satellite which was supposed to have been shut down in September 2014 due to several problems it had. The received signal is strong enough to produce a good black and white weather image, but because the satellite is not longer physically stable, sometimes the Earth’s curve can be seen in the images.

Recent images received from the resurrected Meteor M-N1 weather satellite.
Recent images received from the resurrected Meteor M-N1 weather satellite.
Recent images received from the resurrected Meteor M-N1 weather satellite.
Recent images received from the resurrected Meteor M-N1 weather satellite. The stabilization system has failed so the earth’s curve can be seen.

The exact reason as to why it is transmitting again is unknown, but it is speculated that it is due to a breakdown of the chemicals in the batteries. Last year we posted about how sometimes satellites which have been decommissioned and shut down can spontaneously begin transmitting again when their batteries undergo a chemical change due to thousands of failed recharge cycles. The chemical change allows the batteries to conduct electricity from the solar panels directly to the electronics, which on Meteor M-N1 could be reactivating the transmitters and imaging sensors. If this is what happened then the satellite will only be able to transmit during the day.

The Meteor M-N2 satellite is the currently official active satellite. It transmits weather satellite images with the LRPT protocol which can be received and decoded with an RTL-SDR dongle. We have a previous post on this showing an offline LRPT decoding tutorial and more recently a tutorial showing how to decode LRPT in real time. The same processes can now be adapted to the resurrected Meteor M-N1 satellite by choosing the 80K symbol rate option in the LRPT decoder.

Happysat who submitted this news originally writes:

A few days ago some guy in Argentina was waiting for the pass of Meteor M-N2 and on SDRSharp waterfall he did see LRPT Digital signals on 137.100MHz, but Meteor M-N2 was not in sight yet…

This relatively strong signal was coming from the defunct Meteor M-N1 satellite left out of control in September 2014 last year and was shutdown, although LRPT Transmissions in the past where very limited and sporadic.

Meteor M-N1 did suffer from many problems at this was the first Russian digital weather satellite in the M-series onboard many hardware in experimental stages.

After this report I tried also to capture some signals from Meteor M-N1 (some other amateurs already got small portions of images) but the satellite only transmits in direct sunlight, batteries are not charging any more.

Indicating maybe like the other older ‘deadsat’ some chemical reaction did occur inside the batteries so the power goes from the solar panels directly to the transmission parts.
It did happen before, mostly on older satellite’s only a unmodulated carrier is present when the sunlight conditions are optimal.

Surprisingly after I did record and process the 80K symbol rate QPSK signal from Meteor M-N1 with Vasili’s excellent QPSK Plugin a very nice image was generated!

Not only the sunlight provides power to the transmission part but also there is enough power to activate the imaging system which is quite amazing!

Visible channels 1-2-3 are fully working but the image is only Black and White Calibaration of the sensor are not okay so no color images can be created.

Nevertheless its a very nice addition for current LRPT weather amateurs and a big surprise its even working better when nobody controls it 😉

Because the stabilisation system failed there is no proper correction to orientate the camera and on some passes one can see the earths curve!

There are some conflicting reports about the status of Meteor M-N1 found on the internet:

Status Inactive
Details on Status (as available)

  • MSU-MR was functional with limitations (calibration issues and higher noise level in the IR channels).
  • MTVZA-GY instrument was functional with limitations due to failures of on-board memory and atmospheric sounding channels.
  • Severjanin instrument non-operational.
  • DCS was functional with limitations due to interferences to signals from ground sources.
  • GGAK-M was operational with significant limitations.
  • LRPT was functional with limitations due to information compression errors.
  • Finally, the stabilisation system failed on 23 September 2014 and the instruments could longer be operated.

On October 1, 2014 Meteor-M No 1 was withdrawn from operational use and transferred to the study of the chief designer. The decision on further operation of the spacecraft will be taken upon completion of the research program.

Its not clear the problems did got solved, and I ‘think’ M-N1 started a second life on his own. Time will tell how long the satelitte will function.

Some details:

https://directory.eoportal.org/web/eoportal/satellite-missions/m/meteor-m-1

http://planet.iitp.ru/english/spacecraft/meteor-m-n1_eng.htm

The Meteor M-N1 Satellite.
The Meteor M-N1 Satellite.
A color image received on Meteor M-N1. Colors may not be perfect.  Submitted by Jan.
A color image received on Meteor M-N1. Colors may not be perfect. Submitted by Jan.

Subscribe
Notify of
guest

14 Comments
Inline Feedbacks
View all comments
Steve Marshall

Still trying to configre my RTL-SDR

John

Please advise status of M2 have not heard it for awhile.

Jean

See here : http://homepage.ntlworld.com/phqfh1/status.htm
Seems off, but I haven’t found a resource to confirm this.

Happysat

Meteor M-N1 137.9000 MHz transmitter does not work it fails to start, only 137.100MHz works.

MKjanek32

Today when I was receiving LRPT signal from the Meteor-M 1, I had observed an APT signal somwhere about 137,900 MHz. So probably Meteor-M 1 transmits image using both digital LRPT and analog APT formats!
In few days, I will try to record and decode analog signal from the Meteor-M 1.

Simon

It was NOAA 18 broadcasting APT signal at 137,9 MHz while being over the horizon at the same time as Meteor M1 (broadcasting LRPT signal at 137,1 MHz).

MKjanek32

OK, you’re right. I have just simulated satellites’ positions at 8:30 yesterday in Orbitron and actually there was NOAA 18 low on the horizon – but I missed it when preparing to receive LRPT from Meteor-M1 :-).

Happysat

RT820T1 and a jerry martes Double Cross Homebrewed.

Dave H

Cool, thanks!

Happysat

No more north the center shows Norway and Sweden, left above Iceland 😉

Dave H

Boy, was I way off. What I thought was Greece is actually Denmark. Thanks for setting me straight.

What kind of radio and antenna did you use?

Happysat

Well according to Russian Flight Control, they did stabilize M-N1 and are testing right now.
Batteries are okay but not optimal and just an hour ago they switch to channels 3-4-5 Infrared 72K mode in the evening.
I got this picture – http://i.imgur.com/TpfsJOn.jpg

So a zombie that works again with a little push 😉

Dave H

That’s cool! Is that the Eastern Mediterranean and Black Sea near the bottom?

Dave H

So we have zombies in orbit now? Awesome!