Tagged: APT

The NOAA-15 Weather Satellite May be Failing

Over the last few days the NOAA-15 APT weather satellite has begun to show signs of failure with people receiving corrupted images. NOAA 15, 18 and 19 are weather satellites that can be easily received with an RTL-SDR and a satellite antenna such as a V-Dipole, QFH or Turnstile (tutorial here). NOAA 15 was launched on 13 May 1998, making it one month away from being 20 years old. To put it into perspective, NOAA-15 was only built to the spec of being designed to last 2 years minimum. 

The problem currently appears to be intermittent and is due to a loss of lubricant on the scan motor. NOAA released a message:

The N15 AVHRR global imaging became corrupted on April 12 at ~0000 UTC due to sync issues. This may be caused by erratic scan motor current due to loss of lubricant. The problem appears to have corrected itself, as the global image is no longer corrupted. The issue is still under investigation.

In the Tweet below UHF Satcom displays an example of a corrupted image that was received.

The issue is intermittent, and hopefully it can be fixed, but if not we still have NOAA 18 and 19 which were launched in 2005 and 2009 respectively, as well as the Russian Meteor M2 satellite which was launched in 2014. 

If you're interested discussion of this topic can be found on various Reddit threads [1], [2], [3].

Automatically Receiving, Decoding and Tweeting NOAA Weather Satellite Images with a Raspberry Pi and RTL-SDR

Over on Reddit we've seen an interesting post by "mrthenarwhal" who describes to us his NOAA weather satellite receiving system that automatically uploads decoded images to a Twitter account. The set up consists of a Raspberry Pi with RTL-SDR dongle, a 137 MHz tuned QFH antenna and some scripts.

The software is based on the set up from this excellent tutorial, which creates scripts and a crontab entry that automatically activates whenever a NOAA weather satellite passes overhead. Once running, the script activates the RTL-SDR and APT decoder which creates the weather satellite image. He then uses some of his owns scripts in Twython which automatically posts the images to a Twitter account. His Twython scripts as well as a readme file that shows how to use them can be found in his Google Drive.

mrthenarwhal AKA @BarronWeather's twitter feed with automatically uploaded NOAA weather satellite images.
mrthenarwhal AKA @BarronWeather's twitter feed with automatically uploaded NOAA weather satellite images.

A Video Tutorial about Receiving HRPT Weather Satellite Images

Over on YouTube 'Tysonpower' has recently uploaded a very informative video and blog post showing how he is able to receive HRPT weather satellite images. Note that the video is in German, but English subtitles are provided.

Most readers of this blog are probably familiar with the more commonly received APT images that are broadcast by the NOAA satellites at 137 MHz, or perhaps the LRPT images also broadcast at 137 MHz by the Russian Meteor M2 satellite. HRPT signals are a little different and more difficult to receive as they are broadcast in the L-band at about 1.7 GHz. Receiving them requires a dish antenna (or high gain Yagi antenna), L-band dish feed, LNA and a high bandwidth SDR such as an Airspy Mini. The result is a high resolution and uncompressed image with several more color channels compared to APT and LRPT images.

In his video Tysonpower shows how he receives the signal with his 3D printed L-band feed, a 80cm offset dish antenna (or 1.2m dish antenna), two SPF5189Z based LNAs and an Airspy Mini. As L-band signals are fairly directional Tysonpower points the dish antenna manually at the satellite as it passes over. He notes that a mechanised rotator would work a lot better though. For software he uses the commercial software available directly from USA-Satcom.com.

An Example HRPT Image Received by Tysonpower.
An Example HRPT Image Received by Tysonpower.

A Tutorial on Receiving HRPT Weather Satellite Images with an SDRplay RSP2

RSP2user's HRPT equipment

Over on the SDRplay forums user 'RSP2user' has put up a quality post describing how he receives HRPT weather satellite images with his SDRplay RSP2. HRPT stands for 'High Resolution Picture Transmission' and provides a much higher resolution image compared to the APT weather satellite images typically downloaded from NOAA satellites. Somewhat confusingly the picture quality of HRPT is similar to LRPT (low rate picture transmission) which is used on the Russian Meteor M series weather satellite. HRPT provides 1.1 km resolution, whilst LRPT provides 1 km resolution.

Currently there are multiple satellites broadcasting HRPT signals including NOAA 19, NOAA 18, NOAA 15, Meteor M2, Fengyun 3B, Fengyun 3C, Metop A and Metop B.

The difference in difficulty of receiving APT and LRPT versus HRPT transmissions typically occur in the L-band at about 1.7 GHz, and requires a directive high gain antenna with tracking motor to track the satellite as it passes over. This makes these images many times more difficult to receive compared to APT and LRPT which only require a fixed position antenna for reception at the more forgiving 137 MHz.

Over on his post RSP2user shows how he uses a repurposed Meade Instruments telescope tracking mount and controller to drive the tracking of a 26 element loop Yagi antenna. A 0.36dB noise figure LNA modified with bias tee input is used to boost the signal and reduce the noise figure. The signal is received by a SDRplay RSP2 and processed on a PC with USA-satcoms HRPT decoder software, which is available for purchase by directly contacting him. The HRPT signal bandwidth appears to be about 2.4 MHz so possibly an RTL-SDR could also be used, but it might be pushing it to the limit.

If you are interested, RSP2user also uploaded an APT weather satellite image reception tutorial on another post. This tutorial shows how to build a quality quadrifilar helix antenna as well.

Receiving the HRPT signal on USA-Satcoms' HRPT decoder.
Receiving the HRPT signal on USA-Satcoms' HRPT decoder.

Using a TV Dipole Antenna for NOAA Satellite Reception

Over on YouTube icholakov has uploaded a video showing how effective a simple old TV bunny ears antenna can be at receiving NOAA satellite images. The old TV antenna is telescoping so it can be adjusted to be resonant for many frequencies, and for NOAA satellites about 20 inches makes it resonant. Using the antenna as a V-Dipole and placing it in a North to South direction optimizes the radiation pattern towards the sky, allowing for good reception of the NOAA satellite. Using it this way also helps to null out strong vertically polarized stations. More information on the V-Dipole can be found on our previous post where we posted about Adam 9A4QV’s idea to use the V-Dipole for satellite reception.

Also related to this post is a sneak preview on our new product: We’ve also caught onto the idea that TV antenna dipoles are extremely versatile, and are in the final stages of releasing a simple telescopic dipole product similar to the TV antenna used in this video. It will be released as an antenna set that comes with some portable mounting solutions like a suction cup and bendy tripod, and 3M of RG174 coax so that the antenna can be used anywhere. Target price is $10 -15 USD incl. shipping from China. This will probably also replace the stock telescopic whip antenna currently used in our dongle sets since the telescopic dipole is simply much more versatile.

Instructions for Building a Portable Double Cross Antenna: Great for NOAA/Meteor Weather Satellites

Over on Reddit user merg_flerg has uploaded an imgur post that carefully details a step by step guide for building a double cross antenna. A double cross antenna is great for reception of satellites like NOAA and Meteor since it has a sky oriented radiation pattern with very few nulls. This means that it can receive satellite signals coming from the sky well. Alternative antennas for NOAA/Meteor include turnstiles and QFH antennas, although the double cross antenna seems to have the least nulls, meaning that the signal is less likely to fade in and out as the satellite moves across the sky.

merg_flerg’s design is also modified from the standard design slightly, allowing it to become easily disassembled and carried within a backpack. At the end of his tutorial he writes that he gets much better reception with his double cross antenna than he does with his QFH.

In the post he demonstrates the final constructed antenna decoding a NOAA APT weather satellite image with an RTL-SDR and the WXtoIMG software. See our tutorial for information on decoding NOAA weather satellite images.

The finished double cross antenna connected to a PC running an RTL-SDR and WXtoIMG.
The finished double cross antenna connected to a PC running an RTL-SDR and WXtoIMG.

Building a simple NOAA APT Antenna out of an Umbrella

In order to optimally receive NOAA weather satellite images a special satellite antenna tuned for 137 MHz should to be built. Generally either a QFH or turnstile antenna is recommended as these receive signals coming from the sky very well. If you are interested in receiving weather satellite images from NOAA satellites with an RTL-SDR dongle then we have a tutorial available here.

While QFH and turnstile antennas are not difficult or expensive to build, they still do require a small amount of electrical and construction skills. Over on YouTube user Wanderlinse shows us a possible alternative NOAA antenna that is simply made out of an old umbrella (the video is narrated in German, but it is easy to understand from the visuals). He uses a short BNC cable with crocodile clips, and connects one clip to the spines of the umbrella, and the other to the central metal shaft. For some reason this seems to create a good antenna that receives NOAA APT signals very well. To prevent wind issues he also cuts out some holes in the umbrella fabric.

Wanderlinse also shows that he can receive other signals with this umbrella antenna too, such as long wave, medium wave, shortwave, aircraft radio and ham radio.

Setting up an RTL-SDR based APT/Meteor Satellite Weather Station Receiver

Recently a reader of our blog, Initrd, wrote in to let us know about a new tutorial he created that shows how to set up a dual NOAA APT and Meteor LRPT weather satellite monitoring station with an RTL-SDR dongle. These weather satellites transmit a live image of the portion of the earth that they are currently over, providing a valuable tool for weather analysis. APT transmissions are analogue and are transmitted by the American NOAA satellites, and the newer Meteor M2 satellite transmits a higher resolution image in the LRPT format. We also have posted separate tutorials that show how to set up NOAA APT and Meteor M2 LRPT decoding with an RTL-SDR, but Initrd’s tutorial appears to be a good all in one guide.

His tutorial takes you step by step through a process that involves setting up the satellite tracking software Orbitron, all the required SDR# plugins, the APT decoder WXtoIMG and the LRPT decoder. The tutorial also shows how to connect them all together and set them up so that APT and LRPT decoding can coexist.

sdrsharp_apt