Tagged: meteor

Saveitforparts: Testing a 3D Printable Satellite Antenna for NOAA, Meteor and other Polar Orbiting L-Band Satellites

Over on the saveitforparts channel, Gabe has uploaded a video showing a 3D-printable helicone antenna for receiving weather images from polar-orbiting L-band satellites like NOAA and Meteor. This antenna has become popular in the community as it is relatively easy to build, lightweight, and small enough to be handheld. The 3D model files are available on Thingiverse.

In the video, Gabe shows that initially, he had multiple failed print attempts on the helical scaffold due to the legs warping. He was able to solve this and get a working print by slightly modifying the 3D model to have additional center supports. He then goes on to show the rest of the build, which involves coiling the helix antenna, cutting the reflector out of sheet metal, screwing together the reflector supports, and mounting the reflector mesh.

Finally, he shows that he was able to get successful image reception from NOAA HRPT satellites using hand tracking, with a phone running an RTL-SDR and SatDump for tracking and decoding.

This 3D-Printed Satellite Antenna Is Fantastic!

Discovery Dish April Manufacturing Update

This was posted over on our Discovery Dish Crowd Supply updates page and we are cross-posting here too.

It’s been over a month since our last update so we thought we’d share some of the recent progress. As mentioned in our last update, during the month of February all manufacturing was shut down due to the Chinese New Year holiday. In early March, staff returned to the factories and began making progress on finishing Discovery Dish.

We have a snazzy new logo, and we are working on obtaining some stickers to include with the feeds.

 

Dish Manufacturing Progress

The molds for the dish stamping machine were successfully created in March and the test stamps have come out great. The manufacturer is still tweaking the secondary mold that stamps the mounting and connecting holes, but we expect that to be completed shortly. Once that is done and tested, we can begin stamping the dish segments en masse.

The Dish mounting system was also finalized and we added 45-degree markers to it, which can help with aligning skew.

We are still awaiting the results of the anodizing tests, but they should be completed by the end of this month. Anodizing the dish is important as the dish must be a dark non-reflective matte color, so that it does not focus hot sunlight onto the feed point plastic head.

Feed Manufacturing Progress

PCB Upgrades

While waiting for the manufacturers to finish up with the molds, we’ve been further refining the PCB feed. Our final version of the PCB has now moved to a PTFE substrate with significantly lower loss at higher frequencies. This has yielded an over 1 dB increase in SNR at the GOES 1.69 MHz frequency.

The change to PTFE was not without problems. An interesting RF engineering problem occurred with the move to PTFE that we wanted to share. When moving to PTFE the only changes to the board layout are PCB trace width changes to keep the impedances matched. Other than that, the boards and layout are essentially identical. However, we discovered that the dual LNA design started oscillating when we moved the PTFE substrate. Oscillations can occur with LNAs when RF essentially bounces back and forth between the two LNAs, which causes undefined behavior in the LNA, such as poor gain, multiple spikes in the spectrum, and unexpected current draw values.

We found this quite odd because oscillations were not occurring in the original FR4 PCB, and the QPL9547 LNA is advertised as ‘unconditionally stable’ which means that it should never oscillate. However, we found that unconditionally stable guarantees may not apply to two-stage designs. In the end, the fix was simple, we just needed to add a damping resistor to one of the inductors on the circuit which reduces its Q-value. It seems that the change from FR4 to PTFE effectively increased the Q-value of this inductor so much, which in turn induced an oscillation in the circuit.

Discovery Dish Feed Head Enclosure

We’ve also refined the entire feed assembly. The feed arm pipe now has a ruler laser etched onto it so that mounting it at the correct distance is easy. A skew angle guide has also been added around the neck. A thumbscrew locking mechanism has been added to the feed head neck too, so that skew can easily be adjusted without the need for a screw driver or Allen wrench to loosen the set screw.

The PCB enclosure has been slightly refined and the injection molding die is currently in production and due to be completed in mid-May. While waiting for the die to be made, we’ve been testing different plastic mixes for the head enclosure to make sure that they are UV stable. The plastic mix has certain strict requirements and choosing the correct mix is crucial. It has to be RF-transparent with a low relative permittivity value, it has to endure direct sun, UV damage, and freezing weather, as well as be water-proof too.

S-Band Feed

Previously as noted in prior updates we were testing an S-band feed with the FR4 substrate. But we found that there was too much loss and the SNR values we got were not great. The move to PTFE substrate means that our experimental S-band feed is now working very well. We will be releasing this in the near future as an additional feed product that can be used with Discovery Dish. This feed will have a frequency range of 2.2 GHz - 2.3 GHz. This covers the main S-band weather satellites, other satellites like Coriolios and JASON as well as the many dump-only S-band satellites that transmit signals only over certain regions.

As requested by most people interested in an S-band feed, the S-band feed will not include a downconverter, so to use it you will either need an SDR like the HackRF which is capable of tuning to the S-band, or a third-party downconverter product.

Discovery Dish Outdoor Metal Enclosure Progress

Our enclosure set is now complete, and the final packing has almost been completed. The user manual can be found here Discovery Dish Outdoor Enclosure User Manual.pdf.

The final set consists of:

  • 1x Metal Enclosure
  • 3x Custom metal cable glands
  • 1x Vent
  • 1x Electronics mounting board
  • 1x Pole mounting set (with hose clamps)
  • 1x Wall/DIN mounting set
  • 1x 10 mm x 10 mm x 8 mm thermal pad (to be placed under the electronics mounting board)
  • 1x 10 mm x 10 mm x 3 mm thermal pad (to be placed under electronics on top of the mounting board)
  • 1x Set of various screws and washers

(Note that there will be some minor changes from this image in sets going out of customers - the hose clamp will be shorter, and the mounting rails will be longer)

Meteor M2-4 Launch

We mentioned in our last update that a new weather satellite Meteor M2-4 was due to launch. The launch was successful and the satellite is now in orbit. The satellite was briefly turned on after launch, and we were able to receive HRPT images from it in the L-band. However, now it is currently in a testing phase so the transmitters are often turned off. We don’t know how much longer it will be in testing, but we assume it won’t be more than a few more months.

GOES-U / GOES-19 Launch Updates

We’ve been keeping an eye on the expected launch date for the next GOES satellite. Currently, it has been delayed from April 30, 2024, to the new date of June 25, 2024, when it will be launched on a Falcon Heavy from Kennedy Space Center, Florida.

Elektro-L4 Updates

In the last update, we mentioned that we were having some problems getting SatDump to receive Elektro L4 properly on computing devices that used ARM processors. After some investigation, we determined that this was a problem with buffer size settings in SatDump and we were able to suggest a fix in https://github.com/SatDump/SatDump/pull/616 which was implemented. New versions of SatDump have this problem fixed.

Driver Tweaks

We have been looking at the RTL-SDR drivers and have found a few tweaks that can improve performance at L-band frequencies. We’ve put a modified version of the librtlsdr/librtlsdr fork up our the rtlsdrblog GitHub at https://github.com/rtlsdrblog/librtlsdr. With this fork and the PTFE feed upgrades, we now get around 5-6 dB of SNR on GOES-18.

Antenna Rotator

The low-cost antenna rotator is finishing up with prototype testing, and we are now working on improving the design’s manufacturability.

Timeline

The ramping of progress from the Chinese New Year holidays to now has been a little slower than expected, but if everything goes perfectly to plan, we will be on time for shipping by the end of June. However, this is currently a best-case scenario. There are still a few manufacturing stages to get through like the final mass production, CE testing and sea freight shipping. Unfortunately, from prior manufacturing experience, there are always setbacks along the way that slow progress, so we are conservatively pushing our advertised timeline back by about 1-2 months. We apologize for any potential delays, but we are working hard to get the product out to you ASAP!

Customer Questions

We have had a few more customer questions over email which we’d like the answer publicly below:

Would it be practical to use this kit indoors to do hydrogen-line astronomy? I ask because I live in a flat in a block of retirement flats, and wouldn’t be able to place an aerial or dish outside, but could find space for a Discovery dish + rotation gear inside.

Unfortunately, indoor Hydrogen line astronomy is out of the question. The hydrogen line signal is just too weak to be seen indoors, and there would most likely be too much interference indoors as well.

What all do i need to purchase and get for the Discovery Dish for Radio Astronomy?

You’ll need these two components from the Discovery Dish Crowd Supply store:

  • Discovery Dish (Dish & Mount Only)
  • Hydrogen Line Discovery Feed

You will also need a software defined radio, such as an RTL-SDR Blog V3/V4 which can be purchased separately, a computer and somewhere to mount your dish (e.g. a mast/tripod etc).

Have you tested this for C-Band / Aero downlink reception?

Currently, we do not have a C-band feed, so we have not tested it for this purpose. Generally, a larger 1.2 m+ dish is required for C-band AERO, so the 70 cm Discovery Dish may not be suitable. We may test this with Discovery Dish in the near future just in case however.

I want to purchase a hydrogen antenna. Where should I buy it? Also, please tell me what is needed to observe seti radio waves.

The Discovery Dish (Dish & Mount) and Hydrogen Line Discovery Feed can be pre-ordered from the Discovery Dish Crowd Supply store. I’m not sure exactly what you are referring to with SETI radio waves. An alien signal could in theory be on any frequency, but the 1.42 GHz Hydrogen line frequency could be a good bet as it’s a universal frequency of interest that any technological civilization would be observing. Realistically the Discovery Dish would be too small to detect potential alien signals unless they were very strong.

I’ve seen a small home made 3D-printed dish called a ‘heliocone dish’ being used for HRPT. How is Discovery Dish different?

The heliocone 3D printer design going around is a great DIY solution for L-Band polar orbiting HRPT satellites. But it has some limitations as it cannot receive the weaker geostationary satellites due to its smaller size and use of a circular polarized feed. It also cannot receive satellites using the opposite circular polarization. It also cannot receive satellites on different frequencies or the Hydrogen Line without designing a new helical feed and using a different LNA+filter combo. Discovery Dish is a more of a general purpose ‘does-it-all’ and ‘ready to use’ out-of-the-box dish. With our dish and feeds you can receive the L-Band polar orbiting HRPT satellites as well as the geostationary satellites. You can quickly swap out the feed for a different feed that covers a different band as well.

 

Saveitforparts: Building an L-Band Satellite Antenna out of an Umbrella

Over on his YouTube channel "saveitforparts" has uploaded a video where he uses an umbrella, pin tin and tin foil tape to create a simple dish antenna for receiving GOES, NOAA and METEOR HRPT satellites.

The full build consists of an umbrella covered in tin foil tape, a helical wire feed on a pie tin, a filtered LNA, an RTL-SDR and an Android phone running SDR++. While he did have initial success at receiving, he soon decided to swap out the helical wire feed for a PCB linear feed instead which worked much better as helical feeds can be very difficult to get right.

Through the video saveitforparts goes over the failures he had, in the end noting that it's not a great antenna, but it's something that can be used in a pinch.

We've also seen the umbrella satellite dish used a few times in the past, where here it was used for NOAA APT reception, and here for Hydrogen Line radio astronomy.

We also want to remind readers that we are currently Crowd Funding for our Discovery Dish, which will be a low cost way to get into L-band satellite reception.

Can I Get Satellite Data With An Umbrella?

An off-grid wind and solar powered APT/LRPT satellite image receiver with RTL-SDR

Over on the usradioguy.com blog, Carl Reinemann has highlighted a very impressive remote off-grid radio satellite image receiver setup by Manuel Lausmann (DO3MLA). The setup consists of two Raspberry Pi's, two RTL-SDRs and a QFH satellite antenna connected to an antenna splitter and bias tee. It is able to receive APT and LRPT images from NOAA and Meteor satellites which transmit at 137 MHz. The received images are then uploaded to the internet via a mobile LTE router.

The system is located a remote part of Northern Norway and is powered by a dual solar and wind turbine system with battery storage. Being so remote with little interference, the system is able to receive very clean images, and with the location being so Northern, it can even glimpse the north pole.

Manuel has uploaded a YouTube video where he shows each part of the system. It is in narrated in German, however the YouTube caption auto translate feature can be used.

He notes that in the future he hopes to install a web SDR like KiwiSDR on the site too.

Autarkstation für Funkanwendungen

LeanHRPT – A set of tools for the manipulation of HRPT data

Over on Reddit u/Xerbot has posted about the release of his new software called "LeanHRPT". When combined with a software defined radio, this software can be used to decode and view HRPT weather satellite images received from satellites such as NOAA, Meteor, MetOp and FengYun. We note that unlike APT and LRPT weather satellite signals which transmit in the VHF bands, HRPT signals are generally at ~1.70 GHz and require a motorized or hand tracked satellite dish to receive. u/Xerbot writes:

LeanHRPT is a flexible, easy to use and powerful set of tools for the manipulation of HRPT data (maybe I could be convinced to add LRPT support).

When used properly LeanHRPT Decode can generate (almost) L1B data usable in actual land/weather observation, or just pretty images :)

You can get it here: https://github.com/Xerbo/LeanHRPT-Decode

The LeanHRPT project also contains LeanHRPT Demod, as you probably guessed, a HRPT demodulator. It features an incredibly high sensitivity as well as being able to do both realtime (through SoapySDR) and offline demodulation (baseband).

You can get it here: https://github.com/Xerbo/LeanHRPT-Demod

LeanHRPT Applying a map overlay on FengYun

Building an Automated NOAA and Meteor Weather Satellite Image Collector with RTL-SDR

Over on his YouTube channel saveitforparts has uploaded a video showing how he has built an automated weather satellite image collector for the NOAA APT and Meteor M2 LRPT satellites. The video shows a time lapse of him building a QFH antenna, and how he's mounted a Raspberry Pi and RTL-SDR inside a waterproof enclosure attached to the antenna mast. He goes on to show how he's automating the system with the Raspberry-NOAA V2 software

Automated Home Weather Station (Satellite Image Collector)

Explaining the 9A4QV V-Dipole Design for Receiving 137 MHz Weather Satellites

Back in 2017 we posted about Adam 9A4QV's simple V-Dipole antenna design which works very well for receiving NOAA and Meteor weather satellites at 137 MHz. This type of antenna is a lot easier to build compared to a QFH or turnstile, and it results in good performance if built and set up correctly. Over the years he notes that he's received a number of questions asking to clarify the design and so he's uploaded a YouTube video which explains the built and dimensions of the antenna clearly.

137 MHz WX-SAT original 9A4QV V-dipole antenna

GR-HRPT: GNU Radio HRPT Decoder Blocks for NOAA, METEOR, MetOp and FengYun-3 Weather Satellites

Thank you to @Derek33197785 for writing in and highlighting @aang254's work on gr-hrpt, a GNU Radio 3.8 port of HRPT blocks from gr-noaa and other projects. These blocks are for decoding the HRPT signal from weather satellites like NOAA, METEOR, MetOP, and soon FengYun-3. @Derek33197785 writes to us:

[@aang254] made a custom HRPT decoder and ported HRPT blocks for NOAA, METEOR and MetOp to work with gnuradio 3.8 on Linux. Right now it is the only free and open source decoder for MetOp (that works), and he also thinks about implementing FengYun support. I tested the decoder and it works great.

He's also working on extracting the full data from HRPT, not just the AVHRR/MSU-GS imagery but also all the telemetry and other instrument data.

HRPT is a high resolution weather satellite image signal that is broadcast from the same NOAA satellites that provide the more commonly received low resolution APT images at 137 MHz. HRPT is also broadcast by the FengYun-3, Metop and Meteor satellites. However, HRPT transmits at 1.7 GHz, so a high gain dish antenna with motorized tracking mount (or hand guided tracking), LNA and a high bandwidth SDR like an Airspy is required to receive it.

A Metop HRPT Weather Satellite Image (resolution reduced). See @Derek33197785's twitter for the full resolution image.
A Metop HRPT Weather Satellite Image (resolution reduced). See @Derek33197785's twitter post for the full resolution image.