Tagged: meteor

An off-grid wind and solar powered APT/LRPT satellite image receiver with RTL-SDR

Over on the usradioguy.com blog, Carl Reinemann has highlighted a very impressive remote off-grid radio satellite image receiver setup by Manuel Lausmann (DO3MLA). The setup consists of two Raspberry Pi's, two RTL-SDRs and a QFH satellite antenna connected to an antenna splitter and bias tee. It is able to receive APT and LRPT images from NOAA and Meteor satellites which transmit at 137 MHz. The received images are then uploaded to the internet via a mobile LTE router.

The system is located a remote part of Northern Norway and is powered by a dual solar and wind turbine system with battery storage. Being so remote with little interference, the system is able to receive very clean images, and with the location being so Northern, it can even glimpse the north pole.

Manuel has uploaded a YouTube video where he shows each part of the system. It is in narrated in German, however the YouTube caption auto translate feature can be used.

He notes that in the future he hopes to install a web SDR like KiwiSDR on the site too.

Autarkstation für Funkanwendungen

LeanHRPT – A set of tools for the manipulation of HRPT data

Over on Reddit u/Xerbot has posted about the release of his new software called "LeanHRPT". When combined with a software defined radio, this software can be used to decode and view HRPT weather satellite images received from satellites such as NOAA, Meteor, MetOp and FengYun. We note that unlike APT and LRPT weather satellite signals which transmit in the VHF bands, HRPT signals are generally at ~1.70 GHz and require a motorized or hand tracked satellite dish to receive. u/Xerbot writes:

LeanHRPT is a flexible, easy to use and powerful set of tools for the manipulation of HRPT data (maybe I could be convinced to add LRPT support).

When used properly LeanHRPT Decode can generate (almost) L1B data usable in actual land/weather observation, or just pretty images :)

You can get it here: https://github.com/Xerbo/LeanHRPT-Decode

The LeanHRPT project also contains LeanHRPT Demod, as you probably guessed, a HRPT demodulator. It features an incredibly high sensitivity as well as being able to do both realtime (through SoapySDR) and offline demodulation (baseband).

You can get it here: https://github.com/Xerbo/LeanHRPT-Demod

LeanHRPT Applying a map overlay on FengYun

Building an Automated NOAA and Meteor Weather Satellite Image Collector with RTL-SDR

Over on his YouTube channel saveitforparts has uploaded a video showing how he has built an automated weather satellite image collector for the NOAA APT and Meteor M2 LRPT satellites. The video shows a time lapse of him building a QFH antenna, and how he's mounted a Raspberry Pi and RTL-SDR inside a waterproof enclosure attached to the antenna mast. He goes on to show how he's automating the system with the Raspberry-NOAA V2 software

Automated Home Weather Station (Satellite Image Collector)

Explaining the 9A4QV V-Dipole Design for Receiving 137 MHz Weather Satellites

Back in 2017 we posted about Adam 9A4QV's simple V-Dipole antenna design which works very well for receiving NOAA and Meteor weather satellites at 137 MHz. This type of antenna is a lot easier to build compared to a QFH or turnstile, and it results in good performance if built and set up correctly. Over the years he notes that he's received a number of questions asking to clarify the design and so he's uploaded a YouTube video which explains the built and dimensions of the antenna clearly.

137 MHz WX-SAT original 9A4QV V-dipole antenna

GR-HRPT: GNU Radio HRPT Decoder Blocks for NOAA, METEOR, MetOp and FengYun-3 Weather Satellites

Thank you to @Derek33197785 for writing in and highlighting @aang254's work on gr-hrpt, a GNU Radio 3.8 port of HRPT blocks from gr-noaa and other projects. These blocks are for decoding the HRPT signal from weather satellites like NOAA, METEOR, MetOP, and soon FengYun-3. @Derek33197785 writes to us:

[@aang254] made a custom HRPT decoder and ported HRPT blocks for NOAA, METEOR and MetOp to work with gnuradio 3.8 on Linux. Right now it is the only free and open source decoder for MetOp (that works), and he also thinks about implementing FengYun support. I tested the decoder and it works great.

He's also working on extracting the full data from HRPT, not just the AVHRR/MSU-GS imagery but also all the telemetry and other instrument data.

HRPT is a high resolution weather satellite image signal that is broadcast from the same NOAA satellites that provide the more commonly received low resolution APT images at 137 MHz. HRPT is also broadcast by the FengYun-3, Metop and Meteor satellites. However, HRPT transmits at 1.7 GHz, so a high gain dish antenna with motorized tracking mount (or hand guided tracking), LNA and a high bandwidth SDR like an Airspy is required to receive it.

A Metop HRPT Weather Satellite Image (resolution reduced). See @Derek33197785's twitter for the full resolution image.
A Metop HRPT Weather Satellite Image (resolution reduced). See @Derek33197785's twitter post for the full resolution image.

Meteor Logger: A Tool for Counting Meteor Detections with an RTL-SDR

Thanks to Wolfgang Kaufmann for submitting news about his new software called ‘Meteor Logger’. This tool can be used to count the number of meteors entering the atmosphere which have been detected by a meteor scatter setup using an RTL-SDR or similar SDR.

Wolfgang writes about his software:

I have developed a new piece of software “Meteor Logger” to detect and log radio meteors from the digital audio stream of a PC-soundcard. It is based on Python 3. It is addressed to those meteor enthusiasts who want get the most information out of forward scattering of radio waves off meteor trails. “Meteor Logger” do not display spectrograms, it delivers an instantaneous and continuous numerical output of the detected signal with a high time resolution of about 11 ms. Thereby a radio meteor signal is not detected on the basis of an amplitude threshold but on its signature in the frequency domain. “Meteor Logger” has a built in auto notch function that may be helpful in case of a persistent strong interference line. From these data not only hourly count rates can be derived but it is also possible to easily study power profiles of meteors as well as Doppler shifts of head echoes.

As receiving front end a RTL-SDR is fine, if you strive after a very high signal resolution you may use a Funcube Dongle Pro. I employed SDR# to run the RTL-SDR. GRAVES-radar is used as transmitter. The added screenshot shows this setup together with “Meteor Logger”.

Additionally I wrote an also Python 3 based post processing software “Process Data” that allows for clearing the raw data, viewing and analysing them and exporting them in different ways (e.g. as RMOB-file for opening with “Cologramme Lab” of Pierre Terrier, see added screenshot).

Everything else you may find on my website http://www.ars-electromagnetica.de/robs/download.html

Meteor Logger
Meteor Logger

Meteor scatter works by receiving a distant but powerful transmitter via reflections off the trails of ionized air that meteors leave behind when they enter the atmosphere. Normally the transmitter would be too far away to receive, but if its able to bounce off the ionized trail in the sky it can reach far over the horizon to your receiver. Typically powerful broadcast FM radio stations, analog TV, and radar signals at around 140 MHz are used. Some amateur radio enthusiasts also use this phenomena as a long range VHF communications tool with their own transmitted signals. See the website www.livemeteors.com for a livestream of a permanently set up RTL-SDR meteor detector.

YouTube Video: A Tutorial on Receiving and Decoding NOAA and METEOR Satellites

Back in March we posted about The Thought Emporium’s YouTube video that explained weather satellites and demonstrated that images could be downloaded from them using an SDR like a HackRF or RTL-SDR. Now The Thought Emporium have uploaded part two of the video series, which is a tutorial that shows exactly how to use the free software to receive, demodulate and decode NOAA and Meteor satellites.

The first part of the video shows how to use SDR#, Audacity and WXtoIMG to receive NOAA APT weather images. The second part of the video shows how to use SDR#, Audacity, LRPTrx, LRPTofflinedecoder, SmoothMeteor and LRPT processor to receive Meteor M2 LRPT images.

Receiving Images From Satellites Part 2: Decoding and Demodulating NOAA and METEOR Transmissions

Building a DIY 137 MHz Band Pass Filter

Over on YouTube Adam 9A4QV has uploaded a video showing how to build a DIY bandpass filter for 137 MHz. This can help improve the reception of NOAA and Meteor M weather satellites, by blocking strong out of band signals. Adams design is a 132 MHz – 142 MHz Butterworth bandpass filter which gives about 35 dB attenuation outside of the pass band. He’s also posted a write up documenting the filter design on his website.

Lucas Teske recently went ahead and built the 137 MHz filter suggested by Adam. Lucas didn’t have the correct capacitor values so he ended up cascading several in series. His results showed that the filter did improve his reception significantly.