Tagged: NOAA

Creating An Automated Raspberry Pi and RTL-SDR Based NOAA Weather Satellite Station

The nootropicdesign blog has recently uploaded a comprehensive tutorial showing how to create an automated NOAA Weather Satellite ground station using an RTL-SDR V3 and an Raspberry Pi 3. The project also makes use of an Amazon S3 bucket, which is a cheap web storage platform that allows you to store and access the downloaded images.

The tutorial starts by showing you how to set up your Amazon AWS credentials and bucket on the Raspberry Pi, and how to host a simple webpage that can be accessed publicly. The second stage shows how to set up the RTL-SDR drivers and wxtoimg which is used to decode the images. Finally, the third stage shows how to create the automation scripts that automatically schedule a decode, and upload images to the AWS bucket.

Flowgraph for an automated NOAA satellite weather image station.
Flowgraph for an automated NOAA satellite weather image station.

r2Cloud: Software for Automatically Decoding APT/LRPT Weather Satellites and Cubesats on a Raspberry Pi with RTL-SDR

Thanks to a tweet by @rf_hacking we recently came across an interesting project called "r2cloud". This is an open source program provided on a ready to use image for the Raspberry Pi that can be used to set up an automated satellite recording station for NOAA APT and Meteor LRPT signals, as well as for CubeSats.

The software presents a web based user interface that is easy to setup and view decoded images on. It appears that the software also communicates with a public server that can aggregate and log your data, and also provide it to SatNOGS and provide FunCube satellite telemetry to FunCube Warehouse.

Block Diagram for the r2cloud software.
Block Diagram for the r2cloud software.

Hackaday Article about the Slow Death of NOAA-15

If you've been following our blog, or have your own RTL-SDR based weather satellite station, then you'll know that the NOAA-15 APT satellite has been experiencing issues lately. There appear to be problems with it's camera scan motor resulting from it running low on lubrication. This is fully understandable as the satellite is 21 years old and well past it's expected life span. The satellite appears to be working some days, and producing garbage image other days.

Over on Hackaday, Dan Maloney has uploaded an interesting article that explores the history and technology behind NOAA-15's camera, and why it is now failing.

When NOAA-15 fails for good, don't feel too bad as we still have NOAA-18 and NOAA-19, the Russian Meteor M2, and Meteor M2-2 satellites, and the GOES satellites, all of which can be received by an RTL-SDR. Several new weather satellites are also planned for 2020 and onwards.

Creating Wide Area Composite Images with WXtoIMG + Weather Satellite Failure Updates

With so many independent people receiving weather satellite images from the NOAA satellites daily, an interesting collaborative task is to stitch these images together to create a wide area composite image. Fortunately the WXtoIMG software already has stitching as a feature.

Over on his website "dodgem37" has created a tutorial explaining how to use WXtoIMG to stitch together multiple NOAA weather satellite images that have been uploaded to individuals websites. As well as the tutorial he has created a table of people's websites that contain recent and the required "pristine" processed images that can be used for stitching.

NOAA Weather Satellite Composite by Jeff Kelly (New Jersey, US), Mike Kimzey (Philadelphia, US), David Kunz (San Francisco, US), Cornelius Danielsen (Norway), Alan Hinton (UK), Michael Sørensen (Denmark), and Hans-Juergen Luethje (Germany).
NOAA Weather Satellite Composite created with images from Jeff Kelly (New Jersey, US), Mike Kimzey (Philadelphia, US), David Kunz (San Francisco, US), Cornelius Danielsen (Norway), Alan Hinton (UK), Michael Sørensen (Denmark), and Hans-Juergen Luethje (Germany).

Weather Satellite Failure Updates

We also wanted to provide a brief update on some weather satellites that we RTL-SDR users often receive.

NOAA 15: About two weeks ago NOAA 15 failed and was producing glitched images. However after a few days it came right again, only to have failed again at the end of last month. It appears that the camera scanning motor is getting stuck due to being low on lubricant as the satellite is now well past it's intended life cycle at 11 years old. If you're interested, some info on how the camera on these satellites works can be found here. There is currently no plan for a fix, the only hope is to wait and see if the motor unsticks.

Meteor M2-1: Meteor M2-1 has also recently suffered problems yet again with it's orientation control, and we're regularly seeing off-axis or distorted images that show the curvature of the earth. Over the weekend it was turned off, and should be reset this week. This problem seems to occur and be fixed often, so hopefully it will be back online soon.

Meteor M2-2: The recently launched Meteor M2-2 is functional, but it is still in the testing phase, so is sometimes being turned off. Do not be alarmed if no signal is received sometimes.

GOES-17: GOES-17 is reported to be experiencing problems with it's infrared camera due to a blocked heatpipe, however it appears that they are able to work around this issue and obtain 97% uptime.

A Distorted Meteor M2-1 Image from R4UAB Blog.
A Distorted Meteor M2-1 Image from R4UAB Blog.

Weather Satellite NOAA 15 Appears to have Failed (Again)

Back in April 2018 we posted how the NOAA-15 APT weather satellite that many RTL-SDR users enjoy receiving images from was having problems with it's scan motor resulting in image errors. The satellite recovered from that problem, but today the problem appears to be back and in a much worse way now.

Users on Reddit and Twitter have reported bad images coming in from NOAA 15. Over on Reddit u/rtlsdr_is_fun has provided a post showing an example of a corrupted image, and also provided an IQ and Audio file. On his blog [Karsey] has also posted some interesting looking corrupted images that he's received.

Corrupted NOAA-15 Image Received by [Karsey]
Corrupted NOAA-15 Image Received by [Karsey] (See his post for the full sized images)

NASA have put out a statement indicating that yet again it is a problem with the scan motor, and the problem could be permanent.

The NOAA-15 AVHRR Scan Motor current began showing signs of instability at approximately 0400Z on July 23, 2019. At about 0435Z the current rose sharply to about 302mA where it has remained. Scan motor temperature began rising about the same time and is currently steady at ~26M-0C. Black body temperatures dropped sharply at about the same time. The instrument appears to no longer be producing data.
This behavior is consistent with a scan motor stall, but requires further investigation. Options for recovery are limited.

Having been launched in 1998 with a minimum spec of 2 years operation, NOAA-15 has already well outlived it's time and may finally be failing for real. We hope it will recover, but if not we should be thankful that Russian weather satellite Meteor M2-2 is now fully operational and transmitting beautiful high resolution images.

NOAA-APT Software Decoder: Users Guide Now Available

Back in August, 2018 we posted about NOAA-APT, which back then was a new NOAA APT image decoder program. Recently Martin, the author of NOAA-APT has written in and wanted to note that he's now created a guide and video tutorials for his software, and for NOAA APT reception in general.

NOAA weather satellites broadcast an Automatic Picture Transmission (APT) signal, which contains a live weather image of your area. With an RTL-SDR and antenna they can be received and downloaded every time one of the satellite's passes overhead which could be multiple times a day.

Our standard NOAA weather satellite tutorial makes use of SDR#, audio piping and the WXtoIMG to receive NOAA satellite images. Martin's guide and software might be slightly easier for newbies as it only involves recording an audio WAV file, then loading it up into his software. The disadvantage is that the image is not colorized, and not displayed in real time as it is in WXtoIMG.

As you may already know, the old standard software in NOAA image decoding, WXtoIMG, is now considered abandonware, and the only place to get it is from a third party mirror rehosting the now defunct WXtoIMG website. As WXtoIMG is closed source no further development can occur on it. Martin's NOAA-APT still misses a lot of the advanced features of WXtoIMG but it is fully open source and multiplatform, and so it is a very promising program.

Receiving NOAA satellite images with noaa-apt and SDR#

YouTube Tutorial: Software Set up for a Portable Raspberry Pi and RTL-SDR Based NOAA Weather Satellite Receiver

Last year in December we posted about Matt's element14 sponsored video which showed us how to create a portable briefcase contained NOAA satellite received based on a Raspberry Pi and RTL-SDR dongle. The build consisted of a heavy duty briefcase, modified ATX PSU and stripped down LCD monitor panel. This build resulted in a rugged and portable receiver. The full series of videos demonstrating the briefcase, ATX PSU conversion, LCD teardown, and NOAA satellite receiver demo can be found on his YouTube Playlist.

In his latest video Matt goes over the software installation procedure for creating an automated NOAA weather satellite receiver on the Raspberry Pi. He uses gpredict for predicting the satellite passes, and the Raspberry Pi version of WXtoImg for decoding the images. The rest of the video shows how to set up the software for your particular location, and how to set up decoding automation.

How To Set Up a Raspberry Pi as a NOAA Satellite Receiver with RTL-SDR

Element14 Video on Setting up a Portable Raspberry Pi & RTL-SDR Based NOAA Weather Satellite Receiver

Electronics distributor element14 has uploaded a video to their 'element14 presents' YouTube channel showing presenter Matt building and setting up a portable Raspberry Pi & RTL-SDR based NOAA weather satellite receiver. More information is also available on their supplemental content page.

The build consists of a Raspberry Pi, RTL-SDR and QFH antenna as the basic components. However, it is made into a very nice portable unit by using a stripped down LCD monitor placed into a heavy duty waterproof brief case. The whole thing is powered via a PC power supply. After the build is completed, Matt leaves the case on the roof for a few days collecting images.

Emboldened by the success of his Raspberry PIrate radio, Matt indulges in some more radio hacking by building a specialized QFH antenna and a briefcase form-factor satellite receiver in an attempt to intercept "faxes" from OUTER SPAACEEE!!! Connect with Matt on the element14 community: http://bit.ly/2RiSXC5

Project TIROS is a self-contained, Raspberry Pi-based satellite signal reception system designed to automatically download images and data from NOAA's POES spacecraft as they pass overhead and display the data on an integrated LCD panel. In this video, Matt will walk through how to set up an RTL-SDR module with a Raspberry Pi for automated satellite downloads as well as how to design and build a quadrifilar helical antenna for polar-orbiting signal reception.

Raspberry Pi NOAA Satellite Receiver