Tagged: WSPR

TechMinds: OpenWebRX Feature Overview And Raspberry Pi Setup

Over on YouTube TechMinds has posted his latest video which shows an overview of the features available in OpenWebRX, and also how to set it up on a Raspberry Pi. OpenWebRX is software which allows you to access your SDR remotely via the internet or local network through a web browser. All major SDRs are supported including RTL-SDRs. The software includes a waterfall display, all the standard demodulators, as well as several digital decoders for DMR, YSF, NXDN, D-Star, POCSAG, APRS, FT8, FT4, WSPR, JT65 and JT9.

In the video TechMinds first demonstrates OpenWebRX in action, showing reception of HF SSB amateur radio signals, decoding FT8 and plotting received grids on a map, decoding and plotting APRS on a map and decoding YSF/DSTAR/DMR digital voice. After this demonstration he goes on to show how to set up the OpenWebRX server on a Raspberry Pi via the installation image.

OpenWebRX Feature Overview And Raspberry Pi Setup

WebWSPR: A Browser Based WSPR Decoder and Visualization Tool

A few days ago we posted about [dj0abr / Radio Electronics'] WebSDR software for QO-100. Having looked through his GitHub we've seen that he also has an a similar browser based server tool called WebWSPR for WSPR decoding and visualization (click with WebWSPR link) which was released earlier this year.

WSPR is an amateur radio digital HF mode designed to be decodable even if the signal is transmitted with very low power and is very weak. It can be used to help determine HF radio propagation conditions as WSPR reception reports are typically automatically uploaded to wsprnet. In the past we have been able to receive WSPR and similar modes like FT8 with our RTL-SDR V3 running in direct sampling mode.

Like his QO-100 WebSDR software, WebWSPR is designed to run on a single board computer like a Raspberry Pi or any Linux machine. It serves a web page that shows the WSPR waterfall, decoded data and has various WSPR related control options. The web page can be accessed remotely from any machine on the same network as the server, or could be put on the internet with port forwarding and a hostname service like noip.

A ready to use Raspberry Pi image for WebWSPR is available here (does not seem to support the latest Pi4 or 3B+ however). Manual installation instructions can be found here. The code is all open source and available on GitHub.

The software appears to take input from the soundcard for standard hardware receivers, but it should be possible to pipe audio from an RTL-SDR into pulseaudio, which the software can then use. The instructions from our RTL-SDR V3 WSJT-X tutorial may help.

WebWSPR Browser Screenshot
WebWSPR Browser Screenshot

LimeRFE WSPR Tests

The LimeRFE is a power amplifier and filter bank solution designed for the low cost TX capable LimeSDR software defined radios. It has multiple bands from HF all the way up to 3.5 GHz, and is capable of putting out about 2W on the HF bands. Currently LimeRFE is crowdfunding over on CrowdSupply with a cost of US$599 or alternatively there is now a cheaper unit for US$449 without support for the cellular bands. The campaign is active for 4 more days from the time of this post, and after that the price is due to rise by another US$100.

The team at LimeMicro sent a unit to Daniel Estévez (EA4GPZ) for testing, and he has recently posted about his results and thoughts when using the LimeRFE for WSPR transmission with a 15m long wire antenna. Daniel connected his LimeRFE to his LimeSDR and used WSJT-X piped into SDRAngel via Pulseaudio to transmit WSPR on the 10m band. He notes that for lower bands, the LimeRFE will still need additional low pass filtering to attenuate harmonics. SDRAngel cannot yet control the LimeRFE so he also created a simple Python script for this purpose.

Unfortunately Daniel's unit only achieved 25dBm instead of the advertised 33dB, but in LimeMicro's post they note that they believe that this is due to shipping damage. However, even with only 0.3W power, Daniel's transmissions from Madrid were able to be picked up in the Canary Islands, Netherlands and Northern England.

WSPR Range with a LimeRFE (reduced 0.3W output)
WSPR Range with a LimeRFE (reduced 0.3W output)

Reaching Across Europe with a Raspberry Pi Zero and WsprryPi

Over on YouTube user Techminds has uploaded a video that shows how he is using a Raspberry Pi Zero to transmit WSPR. To do this he uses the WsprryPi software which allows you to transmit WSPR by connecting an antenna directly to a GPIO pin on the Pi Zero. With this no extra hardware is required, although a filter is highly recommended to reduce spurious emissions from harmonics.

In his test Tech Minds directly connected the Pi Zero to an unun and HF wire antenna and ran WsprryPi. His results showed that even with the tiny 10mW output power of the Pi Zero's GPIO port his WSPR messages were able to reach several receivers halfway across Europe, and even to Iceland and Morocco from his home in the UK.

WSPR is an amateur radio digital HF mode designed to be decodable even if the signal is transmitted with very low power and is very weak. It can be used to help determine HF radio propagation conditions as WSPR reception reports are typically automatically uploaded to wsprnet.

WSPR - Weak Signal Propagation Reporter - From A Pi Zero ?

Creating a Standalone WSPR Receiver with an RTL-SDR V3 and Raspberry Pi 3

Thank you to Zoltan for submitting his scripts for installing the rtlsdr-wsprd WSPR decoder onto a Raspberry Pi, and showing us how to configure it for an RTL-SDR V3 dongle running in direct sampling mode. This set up allows users to create an extremely low cost and permanent RX WSPR monitor.

WSPR is an amateur radio digital HF mode designed to be decodable even if the signal is transmitted with very low power and is very weak. It can be used to help determine HF radio propagation conditions as WSPR reception reports are typically automatically uploaded to wsprnet. Direct sampling mode on the RTL-SDR V3 allows you to receive HF signals without the need for an upconverter. For best results it is recommended to use a simple bandpass filter for the band of interest.

Zoltan's tutorial comes with a companion YouTube video where he demonstrates his set up. He uses a random wire antenna on his roof directly connected to an RTL-SDR V3, which is connected to a Raspberry Pi 3.  The Pi 3 communicates to his home network via an Ethernet cable.

Making a standalone WSPR receiver with RPi and RTL-SDR V3 using rtlsdr-wsprd

Tutorial: Setting up a Low Cost QRP (FT8, JT9, WSPR etc) Monitoring Station with an RTL-SDR V3 and Raspberry Pi 3

QRP is amateur radio slang for 'low transmit power'. QRP digital modes such as FT8, JT9, JT65 and WSPR are modes designed to be transmit and received across the world on low transmit powers (although not everyone uses only low power). The special design of these modes allows even weak signals to be decodable by the receiving software. Released in 2017, FT8 has shown itself to now be the most popular mode by far with JT9 and JT65 taking a backseat. WSPR is also not as active as FT8, although WSPR is more of a beacon mode rather one used for making contacts. 

Apart from being used by hams to make contacts, these weak signal modes are also valuable indicators of the current HF propagation conditions. Each packet contains information on the location of the transmitter, so you can see where and how far away the packet you've received comes from. You also don't need to be a ham to set up a monitoring station. As an SWL (shortwave listener), it can be quite interesting to simply see how far away you can receive from, and how many countries in the world you can 'collect' signals from.

This tutorial is inspired by dg0opk's videos and blog post on monitoring QRP with single board computers. We'll show you how to set up a super cheap QRP monitoring station using an RTL-SDR V3 and a Raspberry Pi 3. The total cost should be about US $56 ($21 for the RTL-SDR V3, and $35 for the Pi 3).

With this setup you'll be able to continuously monitor multiple modes within the same band simultaneously (e.g. monitor 20 meter FT8, JT65+JT9 and WSPR all on one dongle at the same time). The method for creating multiple channels in Linux may also be useful for other applications. If you happen to have an upconverter or a better SDR to dedicate to monitoring such as an SDRplay or an Airspy HF+, then this can substitute for the RTL-SDR V3 as well. The parts you'll need are as follows:

  • RTL-SDR V3 (or upconverter, or other HF & Linux capable SDR)
  • Raspberry Pi 3 (or other SBC with similar performance)
  • Internet connection
  • Band filter (optional but recommended)
  • HF antenna (this could be as simple as a long wire)

Examples of QRP Receivers with an RTL-SDR

Monitoring FT8, JT9, JT65 and WSPR simultaneously with an RTL-SDR V3 and Pi 3
Monitoring FT8, JT9, JT65 and WSPR simultaneously with an RTL-SDR V3 and Pi 3


Continue reading

GridTracker Now Available on Windows, Mac and Ubuntu (Debian)

In early February we posted news about the release of a program called GridTracker. GridTracker is a live mapping program for WSJT-X which is a software decoder for low power weak signal ham communications modes such as FT8, JT4, JT9, JT65, QRA64, ISCAT, MSK144 and WSPR. Although these are low power modes, the protocols are designed such that even weak signals can potentially be received from across the world. Mapping the received signals can be interesting as it may give you an idea of current HF propagation conditions.

Previously GridTracker was Windows only software. However recently GridTracker was updated to now include support for Mac and Ubuntu (Debian) operating systems as well. This is great news as it makes it much easier to set up a portable GridTracker screen on a portable computer like a Raspberry Pi.

GridTracker Mapping out Weak Signal Communications.
GridTracker Mapping out Weak Signal Communications.

Receiving WSPR with an RTL-SDR V3 and with Automatic Band Changing

RTL-SDR V3 + Raspberry Pi WSPR Receiver
RTL-SDR V3 + Raspberry Pi WSPR Receiver

WSPR (pronounced "Whisper") is short for Weak Signal Propagation Reporting, and is a HF ham mode typically run on very low power levels such as 1W. The data from WSPR reception can be used to determine how good or bad HF propagation is currently around the world as each WSPR message contains a callsign, 6-digit locator and the transmit power level used. Received messages are all reported to the internet and can be viewed on an online map at http://wsprnet.org/drupal/wsprnet/map.

With an RTL-SDR V3 running in direct sampling mode it is possible to receive and decode these messages on a Raspberry Pi 3 using the WSPRD software.

Over on his website IT9YBG has uploaded a tutorial for a method that allows the WSPRD software to automatically change bands depending on the time of day. The method simply uses the crontab in Linux to automatically run a script that stops and then restarts WSPRD on a new frequency at certain times of the day. This is useful because different WSPR bands tend to become active at different times of the day due to changing HF propagation conditions.

WSPR messages received from all over the world.
WSPR messages received by IT9YBG from all over the world.