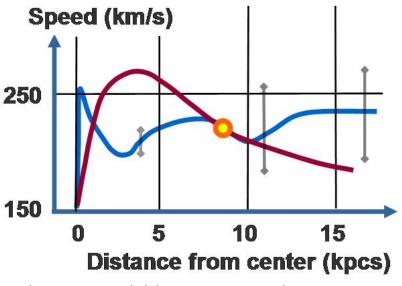

<u>Measurement of Galactic Rotation Curve with JRT</u> Job's Radio Telescope -and describe existence of Dark Matter-

Job Geheniau jobgeheniau@gmail.com September 2020

ROTATION CURVE OF THE MILKY WAY GALAXY

The rotation curve of a disc galaxy (also called a velocity curve) is a plot of the orbital speeds of visible stars or gas in that galaxy versus their radial distance from that galaxy's centre. It is typically rendered graphically as a plot.


The galaxy rotation problem is the discrepancy between observed galaxy rotation curves and the theoretical prediction, assuming a centrally dominated mass associated with the observed luminous material. When mass profiles of galaxies are calculated from the distribution of stars in spirals and mass-to-light ratios in the stellar disks, they do not match with the masses derived from the observed rotation curves and the law of gravity. A solution is to hypothesize the existence of dark matter and to assume its distribution from the galaxy's center out to its halo.

Animation of the theory.

https://commons.wikimedia.org/w/index.php?title=File%3AGalaxy_rotation_under_ the_influence_of_dark_matter.ogv

(wikipedia)

So we would expect that mass further away from the center has a lower velocity than the mass in the centre (like a vortex). But it happens to be a higher almost constant velocity. That means other forces are responsible for this velocity. Nowadays it assumed that the existence of Dark Matter makes the Rotational Velocity Curve look like a horizontal line instead of decreasing speeds.

(red = expected, blue is measured)

THEORY

Time to check that with JRT.

Besides the hardware, we need software and some mathematics to compute the velocities.

To start with the hardest part: formulas.

It took a lot of time and effort to get the right formules and interprete them.

What we need is the values of the highest measured redshift.

We need some goniometrics to compute the speed of the measured cloud.

And now the hard part, we need to compensate for the movement of the Earth AND the speed of our solar system. This is called VIsr: Velocity of Local Standard of Reference.

Because not only the cloud we observe is moving, but we are also moving i.e. the rotation of the Earth AND the speed of the solar system itself)

So some heavy calculations have to be done with formulas like:

VrE = 30.0 cos β sin λ cos λ - cos β cos λ sin λ = 30.0 cos β sin(λ - λ).

BUT...I was lucky, there is a perfect Internet site which does these calculations for me:

http://neutronstar.joataman.net/technical/radial_vel_calc.html

Radial Velocity/VLSR/Observation Frequency Calculators

Calculates the topocentric radial velocity of an observer in a given direction (equatorial coordinates) and observer's latitude and longitude, and UTC time.

May be useful for determining observational frequencies or correcting observation velocities for cosmic spectral lines - e.g., HI emissions and masers (but **not** pulsars).

See instructions and usage below.

UTC (DD/MM/YYYY hh:mm:ss):	02/10/2020 20:37:00	UTC Now			
RA (hh mm ss.s):	19 48 00				
DEC (±dd mm ss.s):	25 40 00				
Latitude (±dd mm ss.s):	52 26 40.0				
Longitude (dd mm ss.s):	04 64 18.0	E 🔍 W C			
Calculate Ra	dial Velocity				
Radial Velocity (±km/s):					

To compute the speed of the observation point, the formula is:

V=(1420.406-f)*Vc/1420.406-Vlsr

Where f is the highest found red shift frequency and Vc is the speed of light, 299790 km/s.

So far for the Rotational speed, the Y-axis in the graph we need.

For the X-axis we need to compute the tangential distance from the Galactic center in kpc. That's easy. That's sin I * 8.5

R=sin(l)*8.5

where I is longitude.

In these pictures you can check it out (if you want to):

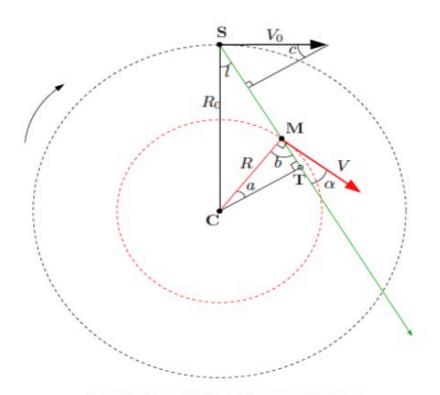


Figure 3. Diagram for the rotation of the Milky Way

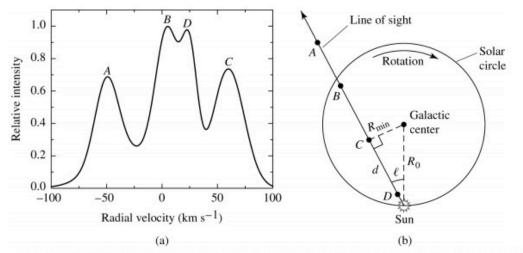


Figure 4. (a) Plot of Hydrogen 21-cm emission along a line-of -sight from the Sun. (b) A diagram showing the positions of the 4 Hydrogen clouds (A,B,C,D) relative to the Sun. Note that the cloud with the smallest R (cloud C) has the largest radial velocity

THE HARDWARE

The JRT radio telescope is 1.5 meter rf-Hamdesign radio telescope. It is FULLY REMOTE CONTROLLED!

It has 2 LNA's and a filter.

Lna 1: Mini Circuits ZX60 Filter: 1.420 Ghz filter Lna 2: Nooelec sawbird Bias-T feeded with 5 Volt and 3.3 Volt 15 meters of Coax RTL-SDR Receiver Laptop SPX-02 Rotator Netfilter 13.8 Volt 10 Ampere Power Supply all remote and viewable by webcam.

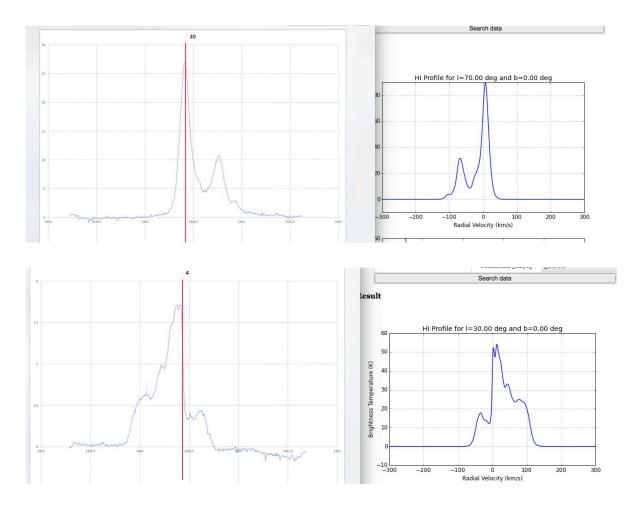
THE SOFTWARE

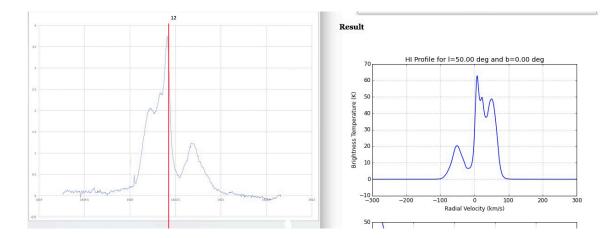
To receive the data from the RTLSDR I use 2 applications, SDR# and VIRGO. But since VIRGO is written in Python I can adjust the software to my whishes.

For tracking I use PsT Rotator which is connected via Cartes du Ciel with Virgo.

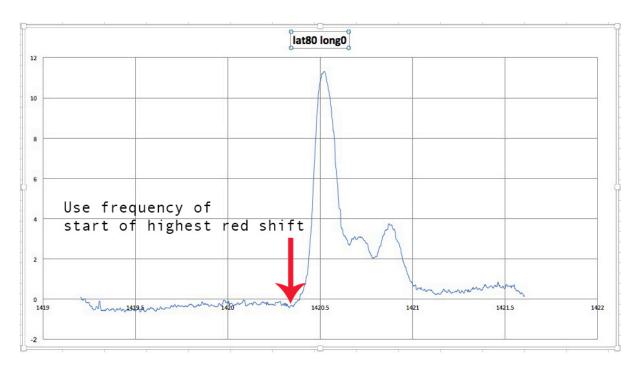
Links:

PsT: <u>https://www.qsl.net/yo3dmu/index_Page346.htm</u> Hamdesign: http://www.rfhamdesign.com Cartes du Ciel: <u>https://ap-i.net/skychart/en/start</u> Virgo: <u>https://github.com/0xCoto/VIRGO</u>




THE PLANNING, GATHERING AND RESULTS

So how to obtain the data?


- 1) Compute RA DEC coordinates with my own Python script. In this case 37 points.
- Let VIRGO run and gather full automatic 37 spectra from longitude
 0 to 90 steps 2.5 degrees. Every spectrum 10 minutes.
- 3) Compare some samples with <u>https://www.astro.uni-bonn.de/hisurvey/euhou/LABprofile/</u>

These are in reverse because its the frequency and not the speed. Red line is 1420.405 Mhz, HI.

4) Look for highest red shift/velocity (lowest frequency start of detection)

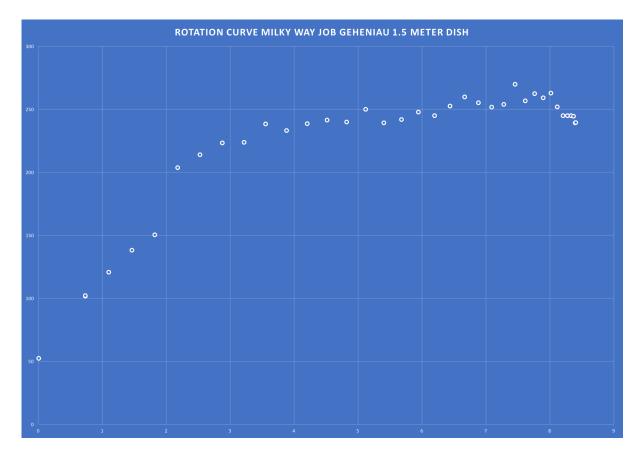
- 5) Compute Vr V=(1420.406-f)*Vc/1420.406-Vlsr
- 6) Plot the distance against rotational velocity in Excel R=sin(l)*8.5

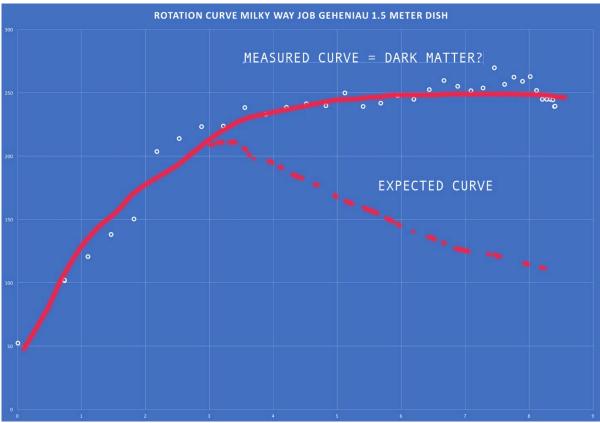
The calculations in Excel

A	В	c	D	E	F	G	н	1	1	К
			Speed of cloud	Distance from	11 min per observation			(SRAPH X	GRAPH Y
Degrees	Sinus calculation	Higest redshift	Vr	Galactic Center	Visr	sin I * 8.5 (kpc)	Vr+220 * sin l	0	olumn G as Value	Column H as Val
Longitude	Rad	Frequency in Hertz	km/s	kpc	km/s	Rotation Curve X-axis	Rotation Curve Y-axis		(pc	km/s
0	0	1420245000	52,38055908	1 0	-18.4	0	52,38055908	-	0	52,3805
2.5	0.087155743	1420100000	82.49416819	0.000543585	-17.91	0.732108239	101.6684316		0.732108239	101.668
5	0.087155743	1420096000	82,90840568	1.596561301	-17.48	0.732108239	102.0826691		0.732108239	102.082
7.5	0.130526192	1420050000	91.99713685	2.022020689	-16.86	1.096420015	120.7128991		1.096420015	120.712
10	0.173648178	1420010000	100.0595118	2.348597821	-16.48	1.458644692	138.2621109		1.458644692	138.262
12.5	0.216439614	1419995000	102.7954024	2.690887443	-16.05	1.818092757	150.4121174		1.818092757	150.412
15	0.258819045	1419784000	146.6489301	2.377296067	-15.37	2.174079979	203.58912		2.174079979	203.5
17.5	0.3007058	1419776000	147.8474051	2.627629909	-14.88	2.525928716	214.002681		2.525928716	214.00
20	0.342020143	1419771000	148.182702	2.862578318	-14.16	2.872969204	223.4271335		2.872969204	223.427
22.5	0.382683432	1419809000	139.6424458	3.197109698	-13.64	3.214540832	223.8328009		3.214540832	223.832
25	0.422618262	1419778000	145.3452863	3.316095273	-12.8	3.549993399	238.3213039		3.549993399	238.321
27.5	0.461748613	1419841000	131.4885458	3.704714896	-12.24	3.878688351	233.0732408		3.878688351	233.073
30	0.5	1419850000	128.6890115	3.91723102	-11.34	4.2	238.6890115		4.2	238.689
32.5	0.537299608	1419870000	123.327824	4.159875455	-10.2	4.51331671	241.5337379		4.51331671	241.533
35	0.573576436	1419914000	113.6612116	4.47194812	-9.82	4.818042065	239.8480276		4.818042065	239.848
37.5	0.608761429	1419900000	115.9860428	4.555110515	-9.19	5.113596004	249.9135572		5.113596004	249.913
40	0.64278761	1419981000	97,9102336	5.022543926	-8.21	5.399415921	239.3235077		5.399415921	239.323
42.5	0.675590208	1420000000	93.25010551	5.223060787	-7.56	5.674957744	241.8799512		5.674957744	241.879
45	0.707106781	1420000000	92.23010551	5.336254427	-6.54	5.939696962	247.7935974		5.939696962	247.793
47.5	0.737277337	1420042000	82.68561183	5.629987406	-5.86	6.193129629	244.8866259		6.193129629	244.886
50	0.766044443	1420030000	84.17832431	5.668607767	-4.82	6,434773322	252,7081018		6.434773322	252.70
52.5	0.79335334	1420021000	85.37785867	5,707894344	-4.12	6.664168058	259,9155935		6.664168058	259.915
55	0.819152044	1420065000	75.03124625	6.001356137	-3.06	6.880877172	255,244696		6.880877172	255.24
57.5	0.843391446	1420103000	66.30099007	6.262299437	-2.35	7.084488145	251.8471081		7.084488145	251.847
60	0.866025404	1420112000	63.33145571	6.379446779	-1.28	7.274613392	253.8570445		7.274613392	253.857
62.5	0.887010833	1420055000	74.64183998	6.14828487	-0.56	7,450890999	269,7842233		7.450890999	269.784
65	0.906307787	1420132000	57.31026825	6.602294075	0.52	7.612985411	256.6979814		7.612985411	256.693
67.5	0.923879533	1420120000	59.12298073	6.584640284	1.24	7,760588073	262.3764779		7,760588073	262.376
70	0.939692621	1420147000	52.35437765	6.78238147	2.31	7.893418015	259.0867542		7.893418015	259.086
72.5	0.953716951	1420140000	53.12179326	6.782741071					8.011222386	262.939
75	0.965925826	1420200000	39.38823087	7.170858628		8.113776941			8.113776941	251.89
77.5	0.976296007	1420240000	30.24585595	7.450786639		8.20088646			8.20088646	245.030
80	0.984807753	1420244000	28.36161845	7.516103086	5.83	8.272385125	245.0193241		8.272385125	245.019
82.5	0.991444861	1420248000	26.82738096	7,569046092					8.328136836	244,949
85	0.996194698	1420250000	25.38526221	7,617659338					8.368035464	244,548
87.5	0.999048222	1420275000	19,45877788	7,808672786					8.392005061	239,249
90	1	1420270000	19.52407475	7.807148413					8.4	239.524

Column 1 Longitude

- Column 2 Sinus in RAD
- Column 3 Measured highest Red Shift Frequency
- Column 4 Speed of Cloud


Column 5 Distance of Cloud to Center


Column 6 Vlsr

Column 7 Sinus L *8.5 as formula

- Column 8 Rotational Velocity as formula
- Column 9 Sinus L *8.5 as value
- Column 10 Rotational Velocity as value

FINAL RESULT !

So we expect a curve down of Neutral Hydrogen Clouds which move slower, but it happens to be a flat curve.

One of the assumptions is that Dark Matter (unknown matter) is generating the extra "pull".

All this was nog possible without help of many people. But I am happy that this result is possible with JRT.

Special thanks to Eskil Varenius, Apostolos Spanakis Misirlis, Eduard Mol, Simon Bijlsma

Job Geheniau – october 2020

More info:

https://en.wikipedia.org/wiki/Galaxy_rotation_curve https://www.youtube.com/watch?v=-UrzmAa62ho http://www.se.euhou.net/docupload/files/handbook/radiosweden.pdf https://astronomy.swin.edu.au/cosmos/r/rotation+curve https://www.youtube.com/watch?v=HccOdToHf18 https://www.youtube.com/watch?v=_eMNRa-KEiQ https://ned.ipac.caltech.edu/level5/March01/Battaner/node9.html