Tagged: EMWIN

A Few GOES Reception Tips and Info on Receiving EMWIN Data

Thank you to Carl Reinemann for writing in and sharing his website that contains a few tips that he's learned when setting up an RTL-SDR based receiver for GOES 16/17 weather satellite image reception.  As well as the tips, he's uploaded a nice set of images that show his setup, and several of the images he has received.

In addition, he's also noted how the default config files provided by goestools do not download EMWIN (Emergency Managers Weather Information Network) images. EMWIN images are not photos, but rather weather forecast and data visualizations that may be useful for people needing to predict or respond to weather. Over on his Github he's uploaded a modified version of goestools which has config files for EMWIN and other image products that might be of interest to some.

If you're interested, Carl Reinemann also has various bits of information about building APT/Meteor satellite RTL-SDR receivers on his main site too. Of interest in particular is his notes on creating wide area composites of NOAA APT images with WXtoIMG which we have posted about in the past.

Some EMWIN Images Received by Carl Reinmann's GOES receiver.
Examples of some EMWIN Images Received by Carl Reinemann's GOES receiver.

Decoding EMWIN Weather Information VHF Rebroadcasts with an RTL-SDR

EMWIN is an acronym for Emergency Managers Weather Information Network, and is a service for emergency managers that provides weather forecasts, warnings, graphics and other information in real time. EMWIN is broadcast from geostationary NOAA GOES satellites, and if you have a GOES SDR receiver setup it is possible to receive and decode EMWIN data.

However, if you don't want to set up a GOES receiver, KD9IXX writes on his blog how he investigated EMWIN and found that 24/7 dedicated EMWIN VHF repeaters are common around the US. Having found an EMWIN repeater in his area at 163.37 MHz he used the TrueTTY decoder and was able to successfully decode the 1200 baud 8-bit ASCII encoded signal and receive weather text information. He notes that VHF EMWIN is an excellent source of non-internet based weather data that could be useful to anyone requiring weather data in emergency circumstances.

EMWIN VHF Repeater Decoded with TrueTTY
EMWIN VHF Repeater Decoded with TrueTTY

Receiving GOES LRIT Full Disk Images of the Earth and EMWIN Weather Data with an Airspy

Over on Reddit user devnulling has made a post showing how he was able to use his Airspy SDR to download full disk satellite images of the earth from the GOES satellite. In a separate imgur post he also shows that he was able to receive EMWIN weather data images from the same GOES satellite.

The Geostationary Operational Environmental Satellite (GOES) is a weather satellite placed in geosynchronous orbit (same position in the sky all the time) which is used for weather forecasting, severe storm tracking and meteorology research. It transmits full disk images of the earth on its Low Rate Information Transmission (LRIT) signal, and weather data images and text on its Emergency Managers Weather Information Network (EMWIN) signal. EMWIN is a service for emergency managers that provides weather forecasts, warnings, graphics and other information in real time.

In his post devnulling writes about receiving GOES:

GOES LRIT runs at 1691.0 MHz , EMWIN is at 1692.7 MHz and is broadcasted from GOES-13 and GOES-15. GOES-14 is currently in a backup position to take over in either fails.

FFT/Waterfall of LRIT + EMWIN – http://i.imgur.com/rgSIORv.jpg
http://www.n2yo.com/?s=36411|29155|35491

For the hardware side, it is recommended to use roughly a 1.2m or larger dish, depending upon how far north you are, you may need a 1.8m dish (larger the better). Repurposed FTA or C-band dishes are easy to come by and work well.

I made a 5 turn helical feed with some 12ga copper wire and a piece of copper plate, and used this calculator to design it – https://jcoppens.com/ant/helix/calc.en.php

Picture of my dish/feed setup: http://i.imgur.com/Q1ZBFrs.jpg

I have a short run of coax into the LNA/Filter box. The first LNA is a TriQuint TQP3M9037 which has a very low noise figure (0.3 dB NF and 22 dB gain at 1.7 GHz).

That is ran into a Lorch 1675 MHz filter (150 MHz pass band), then a LNA4ALL and another Lorch before going over a 30ft run of RG-6 to the SDR.

Picture of the LNA/Filter box – http://i.imgur.com/yt7SvFL.jpg

I am using @usa_satcom (twitter.com/usa_satcom, usa-satcom.com)’s LRIT Decoder and that feeds into XRIT2PIC to produce the images and other data streams. By default the decoder only works with the Airspy, but with a custom GNU Radio UDP block, it can be fed with other SDRs like the BladeRF/USRP/SDR Play. A regular R820T(2) RTL probably won’t work because of the higher frequency (rtls tend to not work above 1.5 GHz) and 8 bit ADC. I’m going to try and use the Outernet e4k to see if I can pickup the EMWIN signal in the near future.

EMWIN is broadcasted on 1692.7 MHz, along with being encoded in the LRIT stream at 1691 MHz. The 1692.7 MHz signal is stronger and narrower, so it is easier to pickup. For decoding EMWIN I used @usa_satcom’s EMWIN decoder that piped data into WxEmwin/MessageClient/Weather Message Server from http://weathermessage.com.

LRIT will contain the full disk images from GOES-15, and relayed images from GOES-13 and Himawari-8. It will also included zoomed in pictures of the USA, and northern/southern hemispheres. The images will be visible light, water vapor and infrared. The full disk images are transmitted every 3 hours, with the other images more often. EMWIN will contain other weather data, text, charts, and reports.

Full disk GOES-15 – http://i.imgur.com/tWlmNMW.jpg

Charts / images from EMWIN – http://imgur.com/a/tsn1K

Text data – http://pastebin.com/raw/ULJmSSTP

Zoomed in west coast USA LRIT – http://i.imgur.com/rzfB0SV.jpg

Northern Hemisphere LRIT – http://i.imgur.com/5tKtPmn.jpg

Himawari-8 LRIT – http://i.imgur.com/sVzikys.jpg

Himawari-8 LRIT – http://i.imgur.com/LBvpTD1.jpg

It seems as though it may be possible to receive LRIT and EMWIN signals with an RTL-SDR since the signals are at 1690 MHz, which should be covered by cooled R820T2 and E4000 dongles. The only hardware requirements would be a 1m+ dish, 1690 MHz L-band feed, and an LNA + filter.

In 2017 these satellites are due to be replaced by new ones that will use a HRIT signal, which will be about 1 MHz. New software to decode this signal will be required then, but we assume the same hardware could still be used as the frequency is not due to change significantly.

Please note that the decoding software is only available by directly contacting usa-satcom, and devnulling writes that you must have the proper equipment and be able to show that you can receive the signal first before attempting to contact him.

GOES Full Disk Image
GOES Full Disk Image
One of several received EMWIN images
One of several received EMWIN images