Category: Satellite

Decoding 12 AERO Channels Simultaneously with an Airspy, Outernet Patch Antenna and SDR-Console V3

In a post uploaded last month we noted that Outernet was selling off some of their old L-Band satellite antennas cheaply. Nils Schiffhauser (DK8OK) decided to take advantage of the sale and bought one. Now Nils has created a blog post that shows how he's been able able to decode 12 L-Band AERO channels simultaneously with the Outernet L-band antenna, an Airspy R2 and SDR-Console V3. AERO is the satellite based version of aircraft ACARS, and it's L-band signals contain short ground to air messages like weather reports and flight plans. Multiple channels are often in use at any one time.

To achieve this Nils uses the multi-channel tuning capabilities of SDR-Console V3, which allows him to open up 12-channels, each tuned to a different AERO frequency. He then opens up 12 instances of the AERO decoder known as JAERO, and then uses VB-Cable to pipe the audio from each channel into a JAERO instance. Nils writes that the key to making JAERO run with multiple instances is to install JAERO into different folders on your PC, and give each JAERO.exe a unique file name like JAERO_1.exe.

He collects all the data into a program called Display Launcher and Nils notes that the whole set up has been stable digesting 54,000 messages over the last 24 hours. 

12x JAERO Decoders Running
12x JAERO Decoders Running

A Lightweight Meteor M2 Demodulator

Over on GitHub dbdexter-dev has released a new lightweight and open source Meteor M2 demodulator. Meteor M2 is a Russian weather satellite that transmits images down in the digital LRPT format. This provide much higher resolution images compared to the NOAA APT signals. With an RTL-SDR, appropriate satellite antenna and decoding software it is possible to receive these images.

This new lightweight demodulator may be especially useful for single board PCs like the Raspberry Pi. Previously, on Linux GNU Radio based demodulators have been used, and GNU Radio isn't exactly a light weight piece of software. To use the software you first need to record an IQ file of the Meteor M2 LRPT signal, downsample the IQ file to 140 kHz (if required), then pass it into the demodulator. This will spit out an 8-bit soft-QPSK file which can be used with LRPTofflinedecoder (now known as M2_LRPT_Decoder) on Windows or meteor_decoder on Linux to generate an image.

An Example LRPT Image Received with an RTL-SDR from the Meteor-2 M2.
An Example LRPT Image Received with an RTL-SDR from Meteor-2 M2.

Chasing Cubesats on a $25 Budget with an RTL-SDR and Homemade Antenna

Cubesats are small shoebox sized satellites that are usually designed by universities or amateur radio organizations for basic space experiments or amateur radio communications. Typically they have an orbit lifespan of only 3-6 months.

Cubesats typically transmit signals at around 435 MHz, and they are powerful enough to be received with a simple home made antenna and an RTL-SDR. To help with this Thomas N1SPY has created a YouTube video where he shows exactly how to construct a cheap eggbeater antenna made out of a few pieces of copper wire and an SO-239 UHF connector. Later in the video he demonstrates some Cubesats being received with his antenna, an RTL-SDR and the SDR-Console V3 software.

Thomas N1SPY chases mini satellites on a budget
Thomas N1SPY chases mini satellites on a budget

Video Demonstrating C-Band AERO Aircraft Tracking

AERO is essentially the satellite based version of aircraft ACARS. AERO's L-band signals contains short ground to air messages with things like weather reports and flight plans. The C-band signals are the air to ground portion of AERO and more difficult to receive as they require an LNB and large dish. However they are much more interesting as they contain flight position data, like ADS-B.

Over on YouTube Tomasz Haddad has uploaded a video of C-band AERO being received from the Inmarsat 3 F2 (Atlantic Ocean Region – East (AOR-E) 15W satellite. He uses a 1.80m motorized satellite dish with Kaonsat KS-N201G C-band LNB, a Prof 7301 PCI satellite card (to power the LNB) and an RTL-SDR V3. The C-band LNB translates the high C-band frequencies down to L-band which is receivable with an RTL-SDR. He notes that the LNB drifts quite a lot as it is not frequency stabilized.

With the signals received by his setup he's able to use the JAERO decoding software together with Virtual Radar Server to plot aircraft positional data using Virtual Radar Server. The plotted aircraft are mostly all in the middle of the ocean or in remote areas, which is where C-band AERO is normally used due to the lack of ground ADS-B stations.

Inmarsat 3 F2 15W C Band AERO Reception Using Jaero And Virtual Radar
Inmarsat 3 F2 15W C Band AERO Reception Using Jaero And Virtual Radar

Outernet’s Old Antenna Stock for Sale: L-Band Active and Filtered Ceramic Patch Antennas

In the past the Outernet project operated on L-band frequencies, and for the service they manufactured a number of active L-band active ceramic patch antennas for use with RTL-SDR dongles. Outernet has since moved on to faster Ku-band delivery, and hence their old L-band antennas can no longer be used for their service.  There are a few of these patch antennas left over in Outernet's stock and they are currently selling them on eBay for US $29 + shipping.

Although no longer useful for Outernet, these antennas are still very useful for receiving other L-band services such as STD-C SafetyNET and AERO. SafetyNET is a text broadcast intended for sailors at sea, but contains many interesting and potentially useful messages for others too. Often they transmit data like military sea live firing warnings, reports of marine pirate activity, search and rescue reports, scientific vessel reports as well as weather reports. AERO is the satellite version of ACARS, and is used by aircraft to communicate with text messages to and from ground stations. L-Band AERO signals only contain information from the ground station up to the aircraft. For air to ground you'll need a C-band receiver set up. AERO is the satellite communications protocol that was so heavily centered on during the MH370 flight disappearance investigation.

In the past we've reviewed the Outernet L-band ceramic patch and found it to work very well. Certainly STD-C and AERO signals are easy to receive with the antenna if you point it at the satellite. The antenna requires bias tee power and can easily be used in combination with the bias tee on our RTL-SDR V3 dongles. The onboard filter helps reduce problems from interfering signals, but restricts reception to 1525 - 1559 MHz, so Iridium signals cannot be received with this antenna.

The L-Band Active Ceramic Patch Antenna.
The L-Band Active and Filtered Ceramic Patch Antenna.

Building A Low Cost GOES Weather Satellite Receiver with an RTL-SDR

Over on Twitter and his github.io page, Pieter Noordhuis (@pnoordhuis) has shared details about his low cost RTL-SDR based GOES satellite receiving setup. GOES 15/16/17 are geosynchronous weather satellites that beam back high resolution weather images and data. In particular they send beautiful high resolution 'full disk' images which show one side of the entire earth. As the satellites are in geosynchronous orbit, they are quite a bit further away from the earth. So compared to the more easily receivable low earth orbit satellites such as the NOAA APT and Meteor M2 LRPT satellites, a dish antenna, good LNA and possibly a filter is required to receive them. However fortunately, as they are in a geosynchronous orbit, the satellite is in the same position in the sky all the time, so no tracking hardware is required.

In the past we've seen people receive these images with higher end SDRs like the Airspy and SDRplay. However, Pieter has shown that it is possible to receive these images on a budget. He uses an RTL-SDR, a 1.9 GHz grid dish antenna from L-Com, a Raspberry Pi 2, the NooElec 'SAWBird' LNA, and an additional SPF5189Z based LNA. The SAWBird is a yet to be released product from NooElec. It is similar to their 1.5 GHz Inmarsat LNA, but with a different SAW filter designed for 1.7 GHz GOES satellites. The total cost of all required parts should be less than US $200 (excluding any shipping costs).

Pieter also notes that he uses the stock 1.9 GHz feed on the L-com antenna, and that it appears to work fine for the 1.7 GHz GOES satellite frequency. With this dish he is able to receive all three GOES satellites at his location with the lowest being at 25 degrees elevation. If the elevation is lower at your location he mentions that a larger dish may be required. It may be possible to extend the 1.9 GHz L-Band dish for better reception with panels from a second cheaper 2.4 GHz grid dish, and this is what @scott23192 did in his setup.

For software Pieter uses the open source goestools software that Pieter himself developed. The software is capable of running on the Raspberry Pi 2 and demodulating and decoding the signal, and then fully assembling the decoded signal into files and images.

Pieters GOES RTL-SDR Receiving Setup
Pieters Low Cost GOES RTL-SDR Receiving Setup

Detecting GPS Jammers In Augmented Reality

The NT1065 is an all-in-one 4-channel global navigation satellite system (GNSS) receiver chip. It is highly versatile and can receive and decode multiple navigation satellites such as GPS, GLONASS, Galileo, BeiDou, IRNSS and QZSS. Being able to receive so many satellites, it is capable of centimeter level positioning.

The team at Amungo Navigation have taken this chip and have created a product called the NUT4NT+ which is essentially a development board for the NT1065, and all the software for signal processing with it is provided as open source software. In the near future they are planning to begin fundraising for the product over on the crowd funding site CrowdSupply.

One very interesting application that they have been developing with a device similar to the NUT5NT+ is a GPS Jammer/Spoofer detector system which they call the Amungo XNZR. This is a combined 4-channel GNSS receiver and 4-antenna GNSS antenna system built into a small package that fits onto the back of an Android tablet. When connected to the software it uses augmented reality (AR) to show you exactly where GPS jammers are in the vicinity by using coherent signal processing. If you're not familiar with AR, this is the technique of overlaying digital data/images on top of a live real world camera view.

Detecting a Kremlin GPS Spoofer in Augmented Reality
Detecting a Kremlin GPS Spoofer in Augmented Reality

In the video below they take their XNZR detector to Varvarka Street in Moscow Russia and determine the location of a GPS spoofer in the vicinity. 

More information about their product can be found on their homepage, and on various interesting forum posts by someone from the company that detail some of their experiments. Note that the forum posts are in Russian, but Google Translate can be used to translate the text.

XNZR is searching for Moscow GPS Spoofing Anomaly
XNZR is searching for Moscow GPS Spoofing Anomaly

The NOAA-15 Weather Satellite May be Failing

Over the last few days the NOAA-15 APT weather satellite has begun to show signs of failure with people receiving corrupted images. NOAA 15, 18 and 19 are weather satellites that can be easily received with an RTL-SDR and a satellite antenna such as a V-Dipole, QFH or Turnstile (tutorial here). NOAA 15 was launched on 13 May 1998, making it one month away from being 20 years old. To put it into perspective, NOAA-15 was only built to the spec of being designed to last 2 years minimum. 

The problem currently appears to be intermittent and is due to a loss of lubricant on the scan motor. NOAA released a message:

The N15 AVHRR global imaging became corrupted on April 12 at ~0000 UTC due to sync issues. This may be caused by erratic scan motor current due to loss of lubricant. The problem appears to have corrected itself, as the global image is no longer corrupted. The issue is still under investigation.

In the Tweet below UHF Satcom displays an example of a corrupted image that was received.

The issue is intermittent, and hopefully it can be fixed, but if not we still have NOAA 18 and 19 which were launched in 2005 and 2009 respectively, as well as the Russian Meteor M2 satellite which was launched in 2014. 

If you're interested discussion of this topic can be found on various Reddit threads [1], [2], [3].