Tagged: satdump

Saveitforparts: Testing a 3D Printable Satellite Antenna for NOAA, Meteor and other Polar Orbiting L-Band Satellites

Over on the saveitforparts channel, Gabe has uploaded a video showing a 3D-printable helicone antenna for receiving weather images from polar-orbiting L-band satellites like NOAA and Meteor. This antenna has become popular in the community as it is relatively easy to build, lightweight, and small enough to be handheld. The 3D model files are available on Thingiverse.

In the video, Gabe shows that initially, he had multiple failed print attempts on the helical scaffold due to the legs warping. He was able to solve this and get a working print by slightly modifying the 3D model to have additional center supports. He then goes on to show the rest of the build, which involves coiling the helix antenna, cutting the reflector out of sheet metal, screwing together the reflector supports, and mounting the reflector mesh.

Finally, he shows that he was able to get successful image reception from NOAA HRPT satellites using hand tracking, with a phone running an RTL-SDR and SatDump for tracking and decoding.

This 3D-Printed Satellite Antenna Is Fantastic!

SatDump 1.2.1 Released

SatDump is a popular program used to receive and decode images and other data from various weather satellites. SatDump works great RTL-SDR Blog dongles and with our Discovery Dish, an easy-to-use dish and feed for receiving L-band and other weather satellites. Recently SatDump version 1.2.1 was released, which brings several new features including:

  • Meteor-M Calibration - Temperatures and radiances are now available from the Meteor-M infrared channels, including enhancements like Cloud Top IR.
  • Archive Loader & EUMETSAT Archives (and EUMETCAST) Support: Metop, Meteosat, Sentinel-3 and more! - Users can now open data from the EUMETSAT archives in SatDump.
  • Windows ARM64 Support - One of the few SDR programs that has Windows ARM64 support.
  • JUICE Support - JUICE (JUpiter ICy moons Explorer) is an ESA probe tasked to study three of the Galilean moons of Jupiter, namely Ganymede, Callisto and Europa. During a recent Earth slingshot it was possible to receive.
  • AIRS and CERES Support - Hyperspectral sounder and radiation budget instruments on the Aqua satellite
  • Arctic Weather Satellite Support - AWS is a weather satellite recently launched in July 2024 with 1707 MHz downlink and similar parameters to METOP, so it should be accessible to many.
  • IASI (imaging channel) Calibration - Calibration for the hyperspectral sounder onboard METOP satellites.
  • GOES-R L2 Product Support - Pre-processed models from NOAA that include Rain Rate per Quarter Hour, Land Surface Temperature, Sea Surface Temperature, and more.
  • GOME Fixes - True Color for METOP satellites.
  • Miscellaneous AVHRR and MHS Fixes - Calibration stripes and other strangeness is less likely to occur even with a bad signal.
  • Miscellaneous Composites - Many new composites are available.
  • Automatic Filename Templating - Customizable filename templates
  • More Quality-of-Life Features - Various tools and warnings added
  • RFNM Support - Support for the new RFNM SDR
  • Library Directory Fixes on Linux - Fixes SatDump on Gentoo and OpenSUSE among others.
  • Advanced Mode - Lets you change all TLE settings, composite configs, default pipeline settings, and more
  • Themes - Various new themes added
  • More Satellites Support - Initial support for XMM-Newton, VERONIKA and ACE
  • Experimental Windows XP Support - A special version of SatDump now runs on Windows XP SP3.
  • Various Bug Fixes
SatDump Running on Windows XP
SatDump Running on Windows XP

Moving on from WXtoIMG for NOAA APT Weather Satellite Decoding

Thank you to Jacopo (@lego11/IU1QPT) and Robin (@OK2AWO) for writing in and sharing with us his thoughts about how the SDR community as a whole should move on from the use of WXtoIMG, and instead switch to SatDump, which now has full feature parity with WXtoIMG and additional features too. SatDump is available on Windows, MacOS, Linux, and even on Android. An up-to-date guide for receiving APT with SatDump written by @lego11 can be found on his website here.

Historically, WXtoIMG has been the software of choice for the popular hobby of decoding NOAA APT weather satellite images with RTL-SDR and other SDRs. However, the software has unfortunately been abandoned by its authors for several years, and can now only be found on third-party websites which increases the possibility of downloading a virus. Also, a hack involving a proxy, or directly updating via a powershell script is now required to allow WXtoIMG to update its TLE/ Kepler files due to the celestrak.com to celestrak.org domain name change.

Lego11 also notes a whole host of other issues regarding vulnerabilities and bugs with WXtoIMG:

  • The software is ancient and uses obsolete libraries, such as Visual C++ 2002 with .NET. These libraries are the main concern when it comes to WXtoIMG, as I don't find it particularly likely for someone to find an entry point through the software itself. However, a much more likely scenario is a virus abusing the loaded library in memory when WXtoIMG is running and using it to gain an entry point. There are at least 20 vulnerabilities affecting MSVCR70.dll, and all are well known (such as CVE-2007-0025) which makes it even more concerning. CVE-2008-4255 in particular allows for remote code execution on the user's computer, which is very serious. There are certainly many more vulnerabilities that have been exploited regarding MSVCR70, but due to the obsolescence of this software component they are usually not tracked in a CVE.

    In either case, just as nobody would use Windows XP as a daily driver in 2024, nobody should use WXtoIMG as a matter of caution, even if the above mentioned vulnerabilities were not present.

    As for the bugs, there are many. Here's a list of the most important ones:
     
  • Cannot update TLE without external software, complicating the experience for newcomers and adding extra failure points
     
  • Map overlay doesn't work properly most of the times, especially if the user starts to receive the satellite before it is at least at 1° elevation
     
  • WXtoIMG will crash if Microsoft Defender starts a memory scan during a pass. This will lose the recording
     
  • WXtoIMG uses an outdated Win32 API to access audio. This doesn't always work on Windows 11 and Microsoft has stated that it will be removed soon.
     
  • WXtoIMG uses ALSA on Linux. The vast majority of Linux distributions don't support ALSA directly anymore, and WXtoIMG cannot work through an audio server (e.g. Pulseaudio) like all Linux applications are supposed to. Therefore, live recording doesn't work on Linux at all.
     
  • WXtoIMG doesn't run on MacOS anymore, as the system will refuse execution due to security problems and missing libraries.
     
  • WXtoIMG cannot support wav files from e.g. SDR# or SDR++ without using a third party tool such as NOAA-APT.
     
  • If a user moves or copies a recorded WAV file (see above), the map overlay will no longer work.
     
  • WXtoIMG is especially sensitive to concurrent CPU usage, which will result in "tears" on the image (as is evident on the images in the guy's tutorial). It cannot handle multitasking well on systems more modern than Windows XP due to changes in how the CPU scheduler works in more modern kernels.
     
  • WXtoIMG will lock up and then crash if the user starts it without first having updated TLEs due to missing NOAA-17. This is very serious, as it happens to newcomers all the time. It is one of the top support request emails/messages I receive. It is not possible to fix this crash easily.
     
  • WXtoIMG doesn't have updated coefficients for calibration, therefore NOAA-15 will look excessively cold compared to other satellites.
SatDump Receiving APT Weather Satellite Images
SatDump Receiving APT Weather Satellite Images (from @lego11's tutorial)

Tech Minds: Testing an Inmarsat L-Band Helix for Offset Satellite Dishes

In his latest video, Matt from the TechMinds YouTube channel tests out an LHCP L-band helix feed designed for receiving Inmarsat satellites. Matt pairs the feed with an 85cm satellite dish, an L-band LNA, and an Airspy Mini.

The L-band helix feed comes from a small German engineering company called nolle.engineering. The feed is priced at 94.70 Euros (incl. VAT) (~$102 USD), plus shipping costs. It is a passive antenna so it needs to be combined with an LNA to be usable with a typical SDR.

In the video Matt shows that the reception with the LHCP helix + dish setup is better than expected. He also compares it to a previous test he did with a longer RHCP helix antenna also produced by nolle.engineering. The RHCP antenna is used to be used without a dish, however, as expected the SNR is less than the dish + small LHCP feed setup. Matt then shows some Inmarsat signals being decoded including STD-C and Aero voice.

This L Band Helix Antenna Gives Amazing Performance

Meteor M2-4 has not failed – it is still in the testing phase

Thank you to Robin OK9UWU who wanted to point out that the recently launched Russian Meteor M2-4 weather satellite has not failed. There have recently been rumors and videos being spread online claiming that the satellite has already failed as the LRPT and HRPT signals are currently offline.

However, the satellite is still in a testing phase and was only briefly transmitting images for a few days after launch. It is difficult to find official updates from Roskosmos, the Russian space agency, but Robin explains his thoughts on what is happening:

The satellite in question, Meteor-M N°2-4 did not fail. The reason for both the LRPT and HRPT transmitters to be off is that the primary instrument (MSU-MR) is currently undergoing a routine cleaning process to get the IR channels up and running correctly.

It's completely normal.

Other reason why it's off could be that they are testing the MeteoSAR instrument (2-4 is the first sat of this series to have this), hence why unnecessary radios might have been taken offline.

It's important to understand that these satellites are being used to do actual science, weather forecasting etc. They require careful testing and calibration which might take some time. It's not just for "cool imagery".

For example, it took months to get the VIIRS instrument running onboard of the NOAA-21 satellite.

Keep calm and nerdy!

spaceintel101.com's infographic about the Meteor M2-4 Launch
spaceintel101.com's infographic about the Meteor M2-4 Launch

Meteor M2-4 Successfully Deployed to Orbit and now Transmitting Weather Images

The long awaited Russian Meteor M2-4 satellite was successfully launched on February 29, 2024 and is now in orbit, and is already transmitting images. If you are unfamiliar with them, Meteor M satellites are a class of Russian weather satellites that can be easily received with an RTL-SDR and appropriate satellite antenna. The easiest transmission to receive is around 137 MHz, and to receive this signal a simple V-Dipole or more advanced QFH antenna can be used. It also transmits in the L-band, and a small 60cm+ dish can be used to receive it with motorized or hand tracking.

The video below is an archived live stream of the launch.

LIVE: Roscosmos Meteor-M 2-4 and others Mission Launch | Soyuz 2.1b/Fregat-M

Prior Meteor M class satellites have typically been plagued with various issues, but so far the launch and deployment of M2-4 appears to have gone very smoothly. Reports are that the signal strength is excellent (much better than M2-3 with it's suspected antenna deployment fault) and images have been received clearly on both VHF and L-band.

TLE's and SatDump have been updated to support Meteor M2-4, so if you want to receive the satellite be sure to update to the latest code on Github.

Over on X, Scott Tilley has posted an image he received recently on both bands.

IndiaRocketGirl Receives FengYun-2H S-VISSR Satellite Images

Over on her YouTube channel IndiaRocketGirl has posted a video showing how she was able to build a satellite dish and feed to receive FengYun-2H S-VISSR signals and get beautiful full disk images of the earth.

In the US and other countries RTL-SDR fans will be familiar with how to receive images from the GOES geostationary weather satellite. However from countries like India most GOES satellites will not be visible. Fortunately there are alternative satellites like the Chinese FengYun-2H satellite which is visible from India. FengYun-2H is a geostationary satellite that sends down a S-VISSR signal containing full disk images of the earth.

In her video IndiaRocketGirl uses a 1.8 meter diameter antenna, a homemade helical feed, an LNA+filter and an RTL-SDR as her hardware. For software she uses SatDump.

How to receive Real Time Images from Geostationary Satellites | RTL SDR | India Rocket Girl

SatDump V1.1.4 Released

SatDump is a popular program used to receive and decode images and other data from various weather satellites. SatDump works great RTL-SDR Blog dongles and with our Discovery Dish, an easy to use dish and feed for receiving L-band and other weather satellites. Recently the author of SatDump released version 1.1.4 which brings several new features including:

  • Autotrack/Scheduler improvements - multi mode has been added which allows all pipelines to run, even if more than one satellite is overhead at the same time. This is useful for NOAA and METEOR satellites at 137 MHz as there can often be more than one active satellite broadcasting images at different frequencies during a pass.
  • TUBIN Raw/Video Mode
  • ESA Cluster support
  • Additional Pipelines - Including Peregine X-Band TLM, the IM-1 Moon Mission and PRETTY S-band dump.
  • Themes - Choose between Dark, Light, Phosphor and Win98 themes.
  • Android Improvements - Blog V4 support added on Android, OpenCL support added.
  • Added composites - Various composite image products added to various satellites. Including Fog, panchromatic, ice detecting and more.
  • Other Features - support for M1 Mac builds added and various other fixes.
  • Bug Fixes - Memory leaks fixed and various bug fixes including a bug that caused problems with RTL-SDR devices on low power hardware like Raspberry Pi's and Orange Pi's.

If you enjoy SatDump consider donating to the main author at ko-fi.com/aang23.

SatDump Multi-Mode Feature. Receiving data from multiple 137 MHz satellites at the same time.