Tagged: HF

Tutorial: Setting up a Low Cost QRP (FT8, JT9, WSPR etc) Monitoring Station with an RTL-SDR V3 and Raspberry Pi 3

QRP is amateur radio slang for 'low transmit power'. QRP digital modes such as FT8, JT9, JT65 and WSPR are modes designed to be transmit and received across the world on low transmit powers (although not everyone uses only low power). The special design of these modes allows even weak signals to be decodable by the receiving software. Released in 2017, FT8 has shown itself to now be the most popular mode by far with JT9 and JT65 taking a backseat. WSPR is also not as active as FT8, although WSPR is more of a beacon mode rather one used for making contacts. 

Apart from being used by hams to make contacts, these weak signal modes are also valuable indicators of the current HF propagation conditions. Each packet contains information on the location of the transmitter, so you can see where and how far away the packet you've received comes from. You also don't need to be a ham to set up a monitoring station. As an SWL (shortwave listener), it can be quite interesting to simply see how far away you can receive from, and how many countries in the world you can 'collect' signals from.

This tutorial is inspired by dg0opk's videos and blog post on monitoring QRP with single board computers. We'll show you how to set up a super cheap QRP monitoring station using an RTL-SDR V3 and a Raspberry Pi 3. The total cost should be about US $56 ($21 for the RTL-SDR V3, and $35 for the Pi 3).

With this setup you'll be able to continuously monitor multiple modes within the same band simultaneously (e.g. monitor 20 meter FT8, JT65+JT9 and WSPR all on one dongle at the same time). The method for creating multiple channels in Linux may also be useful for other applications. If you happen to have an upconverter or a better SDR to dedicate to monitoring such as an SDRplay or an Airspy HF+, then this can substitute for the RTL-SDR V3 as well. The parts you'll need are as follows:

  • RTL-SDR V3 (or upconverter, or other HF & Linux capable SDR)
  • Raspberry Pi 3 (or other SBC with similar performance)
  • Internet connection
  • Band filter (optional but recommended)
  • HF antenna (this could be as simple as a long wire)

Examples of QRP Receivers with an RTL-SDR

Monitoring FT8, JT9, JT65 and WSPR simultaneously with an RTL-SDR V3 and Pi 3
Monitoring FT8, JT9, JT65 and WSPR simultaneously with an RTL-SDR V3 and Pi 3

RASPBERRY PI3 SDR Monitor 40m FT8/JT65/JT9 (RTL-SDR/LINRAD)
RASPBERRY PI3 SDR Monitor 40m FT8/JT65/JT9 (RTL-SDR/LINRAD)

Continue reading

Video Comparing the RSP-1A Against the Airspy HF+, and Testing out the Airspy HF+ R3 Mod

Over on YouTube icholakov has uploaded two new comparison videos. The first compares the Airspy HF+ against an RSP-1A on HF signals with a W6LVP receive loop antenna in a noisy suburban backyard in Florida.

Results appear to be quite similar for most signals, although we noted better performance from the HF+ on some particular weak signals surrounded by strong AM stations in the test such as the 810 kHz signal at 3:37, but lower noise on some signals received by the RSP-1A such as at 9:32. The tests were performed with a stock HF+ without any firmware updates applied so it's possible that the updates could improve results further.

In the second video icholakov performs the R3 mod on his Airspy HF+ and compares the results before and after. It appears that shorting R3 improves reception on MW slightly, and has little effect at higher frequencies. We also note that the R3 mod is mostly designed to mostly improve VLF/LF reception which is not tested in the video.

W6LVP receiving loop: Airspy HF+ vs. SDRPlay RSP-1A
W6LVP receiving loop: Airspy HF+ vs. SDRPlay RSP-1A

Airspy HF+ R3 Modification test
Airspy HF+ R3 Modification test

Video Tutorial on Decoding FT-8 and RTTY with an SDRplay RSP1A

Over on YouTube radio content creator Techminds has recently started a series that shows how to decode various signals using an SDR such as the SDRplay RSP1A. The first video explains what FT-8 is and shows how to decode it using the WSJT-X software. FT-8 is a modern digital HF ham mode that is designed to be receivable even in weak signal reception. However, the amount of information sent in a FT-8 message is small, so it is not possible to have a full conversation, and you can only make contacts.

In his second video Tech Minds explains RTTY and also shows how to decode it. RTTY is another much older mode that is used by the military as well as hams. To decode it he uses Digital Master 780 which is a program included in the Ham Radio Deluxe software.

Decoding FT-8 With WSJT-X And A SDRplay RSP1A SDR Receiver
Decoding FT-8 With WSJT-X And A SDRplay RSP1A SDR Receiver

Decoding RTTY With Digital Master And A SDRplay RSP1A SDR Receiver
Decoding RTTY With Digital Master And A SDRplay RSP1A SDR Receiver

Listening to SELCAL and the HF Air Band with an RTL-SDR

Over on YouTube content creator Tech Minds continues to upload informative RTL-SDR based videos, this time discussing SELCAL and the HF Air Band. For international flights it is common for aircraft to communicate with ground controllers and the parent company via the HF bands.

As radio communications are sparse, and the pilots obviously don't want to monitor noisy HF static for the entirely journey a system is required for signalling pilots when a ground station wishes to communicate with them. The system in use today is SELCAL which simply consists of transmitting a set of tones unique to an aircraft. When a correct SELCAL tone is received the aircraft system alerts the pilots that a radio voice communication is about to come through, allowing them time to get the radio in operation. 

Tech Minds' video explains this in a bit more detail, and shows some examples of HF air comms with SELCAL tones played.

Receiving HF Air Band With An RTL SDR Receiver - SELCAL
Receiving HF Air Band With An RTL SDR Receiver - SELCAL

Identifying Noise Sources in the Shack using an SDR and an Active Receive Loop

Over on YouTube user SignalSearch has uploaded a video showing how he uses an active magnetic loop antenna indoors to identify local noise sources. Magnetic loop antennas are directional, meaning that they receive best when pointing towards a signal. This means that they also receive noise better when pointed at a noise source.  In the video SignalSearch uses a W6LVP receive loop antenna and demonstrates noise being emitted from his lightbulb, and from a plug in Ethernet over powerline adapter, which are known to be huge sources of HF noise.

If you are interested in the noise produced by these Ethernet over powerline adapters then we did a previous post on this problem over here.

Using an Active Receive Loop Indoors & utilizing Software Defined Radio to identify noise sources
Using an Active Receive Loop Indoors & utilizing Software Defined Radio to identify noise sources

Antennas for Receiving Shortwave Indoors with an SDR

Over on the swling.com blog admin Thomas has been exploring various indoor antenna options for pairing with an HF capable software defined radio. He notes that unless you happen to live in isolation, you're highly likely to experience RFI problems with standard wire antennas. Instead he recommends looking into magnetic loop antennas which are significantly more resistant to urban electric field based RFI noise, and they can also be rotated to null out any other local noise sources. Thomas then goes on to highlight some of the best commercial magnetic loop options for sale. There is also some good advice in the comments section.

We note that magnetic loop antenna seem to work fairly well with the RTL-SDR in V3 in direct sampling mode, but you may need to filter out the broadcast AM band to avoid overload if the loop doesn't do this already.

An example small PK-Loop antenna for receiving shortwave with an SDR.
An example small PK-Loop antenna for receiving shortwave with an SDR.

More Reviews and Discussion on the Airspy HF+

Recently a few more reviews of the HF+ have been released and we list some of them below for those thinking about purchasing one.

SDRPlay RSP-1A vs. Airspy HF+ on Shortwave and Medium Wave

In this video icholakov compares the RSP-1A with the HF+ on shortwave and medium wave reception. He writes:

Comparing reception of two popular SDR Receivers using the same antenna at 5 PM local time. Short wave and medium wave frequencies. Using the same SDR Console 3 software for both. I have not ced enough variances using different usb cables and different host laptops to say that in this case the two are pretty much on par. The laptop running RSP-1A happened to have a better audio profile but that's the laptop not the sdr. I only see a noticeable difference when receiving the low power 10 Watt Travel Information radio from the Florida Turnpike on 1640 kHz. I assume that it is coming via ground wave.

SDRPlay RSP-1A vs. Airspy HF+ on Shortwave and Medium Wave
SDRPlay RSP-1A vs. Airspy HF+ on Shortwave and Medium Wave

Airspy HF+ vs Elad FDM-S2 Weak Signal Comparisons

In this guest post on the swling.com blog Guy Atkins put up a number of audio samples recorded from the HF+ and FDM-S2. The audio samples were not labelled with the radio they came from and he asked readers to vote on which audio sample sounded better. A week later he released the results which showed that the HF+ and FDM-S2 had mostly 50/50 votes, indicating that one did not really sound better than the other.

Airspy HF+ Review - A Nice SDR Receiver

In his blog post Roi Huberman shows a few examples of the HF+ in action and briefly compares it against his SDRplay noting the better dynamic range.

Airspy HF+ Broadcast FM Selectivity Check

In this video by YouTube user stereo11 the selectivity of the HF+ is tested by attempting to receive weak far away stations that are very close to a powerful local station on the frequency spectrum. The HF+ and the SDR# software is able to easily reject the strong station once the IF is adjusted. 

Airspy HF+ SDR - selectivity check next to local
Airspy HF+ SDR - selectivity check next to local

Overview of the HF+

This YouTube video by Radio-Noticias revista española de radioafición is in Spanish, but can be decently autotranslated using YouTube captions to English. It provides a good overview of the HF+ design and features.

Escucha la HF a tope con el receptor SDR Airspy HF+
Escucha la HF a tope con el receptor SDR Airspy HF+

Airspy HF+ MW Overload Problems

All the reviews we've seen so far have praised the HF+ heavily, but it's worth noting that it seems that a few HF+ owners are experiencing significant overloading problems. These are typically users that live very close to powerful MW AM transmitters.

However, the good news is that it seems that a recent firmware patch fixes this issues. The firmware update with instructions can be found at the bottom of the HF+ page on the Airspy site. The firmware update involves opening the case and briefly shorting two pads so it is only really something to do if you are experiencing problems in the first place. It also appears that performing a simple hardware mod helps too.

Previous Reviews

In the past we reviewed the HF+ ourselves and that review can be found here. You can also search our previous posts for various other HF+ reviews that we've posted about before.

The K9AY Loop Antenna: A Directional E-H Antenna for HF

Thank you to Frank Sessink (PA0FSB) for submitting to us his document describing the K9AY loop antenna (pdf), which is the antenna that he successfully uses with his RTL-SDR for HF reception. The antenna combines magnetic (H) and electric (E) field reception in order to create a directive radiation pattern. Frank extends the idea by showing a method that can adjust the directivity electrically with some simple resistor switching.

The antenna that I use is for medium wave DX, specially to receive MW from USA here in Europe/The Netherlands. The antenna is a combination of a magnetic loop and a sense antenna for the E-field. The magnetic loop is directive, but has no front-rear ratio. The E-field antenna has omnidirectional sensitivity. The combination, in correct phase and amplitude, results in a front-rear ratio of more than 25 dB over the frequency range from 500 kHz to around 3 MHz. Higher frequency makes no sense, since skywave signals distort the ground wave directivity pattern.

A simple modification is used as directional antenna with remote control: two orthogonal loops that combine E and H-field in a simple way. I can make 8 selectable directions.

The full document is available here in PDF format.

The K9AY E-H HF Antenna
The K9AY E-H HF Antenna