Tagged: HF

PEPYSCOPE: A Simple Panadapter for HF Radios using RTL-SDR Direct Sampling

Over on GitHub user mcogoni (Marco/IS0KYB) has recently released a new program called Pepyscope. Pepyscope is a simple and fast panadapter application that is designed to be used with direct sampling capable RTL-SDR's such as our RTL-SDR Blog V3 units. Like other panadapters you simply connect the IF output from the hardware HF radio into the input of the RTL-SDR. Then Pepyscope gives you a waterfall display that helps users to easily visualize the spectrum.

Pepyscope is open source and runs on Linux PCs. So far Marco has tested Pepyscope with a KENWOOD TS-180S (single conversion with IF at 8.83 MHz) and an RTL-SDR v3. He has also uploaded a demonstration video on YouTube.

PEPYSCOPE: a simple panadapter for Linux and the RTL-SDR in direct sampling mode

SDRplay RSPDuo Diversity: Combing a Magnetic Loop and Miniwhip Antenna

The SDRplay team have posted some more videos that demonstrate the SDRplay Duo's diversity function. The SDRplay RSPDuo is a 14-bit dual tuner software defined radio capable of tuning between 1 kHz - 2 GHz. It's defining feature is that it has two receivers in one radio, which allows us to combine the signal from two antenna together.

In the video Jon uses a Wellbrook Magnetic Loop antenna and a Bonito Miniwhip antenna both connected to the RSP Duo. Individually each antenna receives the signal relatively poorly and fades in and out as conditions and signal reflections fluctuate. However, with diversity enabled the SNR is improved and fading is significantly reduced.

The method they use to combine signals is a relatively simple method called maximum-ratio combining (MRC). The idea is that the two signal channels are added together, with the currently stronger and less noisy channel having increased gain. So while the signal levels fluctuate, as long as one antenna can receive the signal you will see no fading.

SDRplay HF Diversity Demo

SDRplay note that the key to a good setup is to have the antennas spaced out at a quarter wavelength of the signal frequency that you are receiving. In a second video they show how to properly set up an antenna system for proper HF diversity receiving.

This video demonstrates how SDRuno diversity and the RSPduo can bring enhanced reception at HF using 2 antennas separated by approximately a quarter wavelength. It uses the the current version of SDRuno (V 1.32) and the dual tuner RSPduo SDR from SDRplay.

In this experiment we had a wire dipole with one leg approximately a quarter wavelength from a Boniwhip vertical - both were picking up similar strength signals before going into "diversity" (max ratio combination) mode.

The benefits of diversity tuning at HF are very dependent on many variables, most notably the changing nature of the reflected signal path and the degree to which noise and unwanted signals are not as coherent as the wanted signal.

Antenna and SDRplay set-up for HF diversity reception (rev1)

Fenu Radio Reviews the Airspy HF+ Discovery

The Airspy HF+ Discovery is a smaller, lighter and improved version of the Airspy HF+ which is an HF and VHF SDR with very high dynamic range. The Discovery builds on the HF+ by adding low loss preselectors. This increases the dynamic range even further, and allows the Discovery to compete with some very high end (and much more expensive) SDRs.

Currently the Airspy HF+ Discovery is available for preorder for USD$169. There have been a few delays in getting the unit out, but it appears that the Airspy team will begin shipping very soon.

Over on his blog, radio product reviewer Fenu-Radio has received an Airspy HF+ Discovery, and has given it an in depth review and put it through several real world tests. Fenu-Radio notes that while the initial prototype unit that he received had some issues with overload above 19 MHz, the latest production version has completely remedied this, resulting in impressive performance that competes favorably with the high end USD$2000 Winradio G33DDC software defined radio.

In the review Fenu-Radio compares the Discovery against the G33DDC and finds absolutely no difference in performance between the two. In the review he's also uploaded several audio comparison samples so that you can hear for yourself how identical the two radios are.

Fenu-Radio's Airspy HF+ Discovery Review Unit
Fenu-Radio's Airspy HF+ Discovery Review Unit

Homebrew SDR Transceiver for HF Operation

Traditionally when we think about Software-Defined Radio we’re thinking about little USB adapters that unlock a world of radio in the palm of our hands. This is done by allowing us to directly sample the IQ data from the mixer within the SDR.

However, this isn’t the only way to experience Software-Defined Radio. Ham Radio operator [Charlie Morris] has uploaded a 10 part series on YouTube explaining how he implemented his own HF transceiver, including custom software. Some of the components such as the amplifier and filters are built completely from scratch, other components use a little DSP magic from a “Teensy” microcontroller. 

Charlie actually samples the I and Q data in a similar way that today’s SDRs do and even implemented the transmit side of the radio so he can make contact with other radio operators around the world, and man… it sounds good!

You can find a complete playlist from Charlie with well-explained videos that go over his entire process from planning, schematics, layout and final operation. The channel appears to be quite active and will surely continue to pump out amazing content.

Homebrew SDR SSB Rig – Part 9 First On-Air QSO!

Decoding FT8 with an RTL-SDR Blog V3 in Direct Sampling Mode

Over on YouTube user ModernHam has uploaded a useful tutorial showing how to use our RTL-SDR Blog V3 dongles for FT8 monitoring. The RTL-SDR Blog V3 has a built in direct sampling circuit which allows for reception of HF signals without the need for any upconverter. FT8 is an amateur radio weak signal digital communications mode which can be received all around the world even with low transmit power.

In his setup he uses SDR# and Virtual Audio Cable to pipe audio to the WSJT-X decoder. His video goes through all the steps and settings that need to be set and then shows a demo of some signals being received. ModernHam also has another video uploaded a few days earlier which is a more general introduction to FT8 decoding.

If you're interested we uploaded a tutorial last year that shows how to set up a Raspberry Pi 3 based FT8 decoding station with a V3 dongle.

Decoding FT8 with a RTL-SDR (Software defined Radio)

Demonstrating HFDL Reception with a Cloud-IQ SDR and MultiPSK

Over on YouTube user Shortwave Bavaria has uploaded a video that demonstrates HFDL reception. HFDL is short for High Frequency Data Link and is a signal used by aircraft to communicate short messages with ground stations over long distances. It is often used in place of VHF ACARS when flying over oceans.

In his video Shortwave Bavaria uses a 26.5m end fed wire, and a Cloud-IQ SDR. But we note that any HF capable SDR can be used to receive HFDL. SDR-Console V3 is used as the receiver, and MultiPSK Professional edition as the decoder. Many HFDL messages contain location data, so aircraft can be plotted on a map and he demonstrates this using Google Earth. In the video he notes how amazing it is that flights from across the globe can be received with his set up.

Amazing Decoding HFDL reception with SDR over central Europe

Hermes-Lite: A Low Cost Amateur Radio SDR Made from A Repurposed Cable Modem Chip

The HPSDR Hermes SDR is an open source amateur radio SDR transceiver project that was released as far back as 2011. More recently Steve Haynal has been working on a Hermes-Lite project which is intended to be an opensource open hardware low cost amateur radio HF transceiver which is based on the HPSDR Hermes SDR project software and FPGA DSP implementation.

The Hermes-Lite is able to be very low cost (less than $300) because it is based on the AD9866 chip which is a mass produced RF front end (LNA + ADC & DAC) used in cable modems. Because it is a mass produced commodity, the chip only costs approx. US$35-$25 on Mouser depending on quantity. The chip has a 12-bit 80 MHz ADC and DAC, meaning that if used without any analog mixer front end (like in the Hermes-Lite) it can receive the entire spectrum between 0.1 to 38 MHz all at once.  

The Hermes-Lite is also a lot more than just the RF chip, as it contains a set of switched RF filters and a 5W power amplifier for TX. It also interfaces with a PC via Ethernet and has a built in FPGA for DSP processing.

Recently Steve presented at the FOSSi Foundation Latch-Up conference on May 4-5, and a YouTube recording of his presentation is shown below.

[First seen on The SWLing Post]

Hermes-Lite: Amateur Radio SDR

Elektor SDR Hands-on Book + Arduino Shield HF SDR

Elektor is a popular electronics magazine and hobbyist kit store. Recently they have published a book titled "SDR Hands-on Book" written by Burkhard Kainka. The book is intended as a companion to their Arduino SDR shield kit, which is a low cost module that allows you to turn an Arduino into a 150 kHz to 30 MHz capable SDR. It is based on the G8JCFSDR, which is an RF front end downconverter that allows a PC soundcard to be used as an SDR analog to digital converter.

Kainka's book goes over introductory topics such as shortwave reception, explains signal to noise ratio and interference, different types of antennas, software, digital modes, SDR measurements, receiving and finally WSPR and QRP transmission. If you're interested Jan Buiting also recently reviewed the book on the Elektor website.

Elektor are currently running a promotion and are selling the book + Arduino shield for a reduced price of €49.90.

The Elektor Arduino Shield HF SDR Kit.
The Elektor Arduino Shield HF SDR Kit.