Tagged: openwebrx

Remote Spectrum Monitoring with OpenWebRX, RTL-SDR and the Balena Cloud Service

Thanks to Alan Boris of Balena.io for submitting their new blog post titled "Running OpenWebRX on balena to remotely monitor local radio spectrum". Balena.io is an IoT cloud service that is used for "building, deploying, and managing fleets of connected Linux devices".

In the blog post, they show how it's possible to use a RTL-SDR and Raspberry Pi running OpenWebRX to remotely monitor the radio spectrum over the internet. This of course has been done many times before, however, the novel thing here is the use of the Balena cloud platform which makes installing and managing the Raspberry Pi running OpenWebRX much easier.

Balena has a has a special balenaOS image that is first burned on the Raspberry Pi's SD card. The OS image is pre-generated with your home WiFi details, so upon boot it automatically connects to the internet and can be accessed on the balenaCloud dashboard. At that point you can easily remotely push the pre-made Balena "sdr-spectrum-monitor" docker image to the Pi from the Balena online dashboard. This docker image has OpenWebRX and the RTL-SDR drivers already installed on it. It's then a simple matter of connecting to OpenWebRX via the local IP address as you would normally.

This is quite a nice system as it avoids needing to perform the "fiddly" steps of setting up WiFi, connecting to the Pi, determining the Pi's IP address, and installing the RTL-SDR drivers and OpenWebRX software manually.

Balena also has a very simple way to make the OpenWebRX server accessible from outside your network. The only steps required are to set a port variable in the Balena cloud dashboard, and enable the "public device URL" option. No need to fiddle around with unblocking ports or dynamic DNS services.

Balena.io appears to be free for personal use, allowing you to add and manage up to 10 devices before needing to pay.

RTL-SDR & OpenWebRX Installed and Managed via Balena Cloud.
RTL-SDR & OpenWebRX Installed and Managed via Balena Cloud.

KiwiSDR Portal SDR.HU Now Requires a Ham Licence + OpenWebRX Development Discontinued

The KiwiSDR is a US$299 HF SDR that can monitor the entire 0 - 30 MHz band at once. It is designed to be web-based and shared, meaning that the KiwiSDR owner, or anyone that they've given access to can tune and listen to it via a web browser over the internet. 

OpenWebRX is code originally created by András Retzler and a modified version runs on the KiwiSDR devices. This code is what allows them to be accessed online by a browser and was popularized by it's use in the KiwiSDR. The original code can also be used by other compatible SDRs such as the RTL-SDR.

Recently András released news that he is discontinuing work on OpenWebRX due to interest in other projects, but it will remain on GitHub as open source code. András also notes that the security of OpenWebRX will soon be in question as it utilizes Python 2, which has been designated end of life on January 1 2020. In addition, if you've been following OpenWebRX since the beginning, you'll know that in the past OpenWebRX was involved in an legal/ethical issue over open source licencing with KiwiSDR. Although the problems with KiwiSDR were resolved amicably, Andras also references his frustrations with similar situations to do with his code being forked again and again. 

We note that maintenance and development of the KiwiSDR OpenWebRX code will continue as they are considered separate projects. Due to some confusion, we importantly reiterate that the KiwiSDR product is unaffected by OpenWebRX being discontinued. Although KiwiSDR is based on OpenWebRX they use their own custom branch of the software that is maintained by the KiwiSDR owners and not by András.

András also runs the popular sdr.hu OpenWebRX/KiwiSDR directory, which was/is considered the main directory for finding and accessing public KiwiSDR and other SDR devices running OpenWebRX. Recently the directory was restricted, and now can only be accessed by those with a ham radio callsign. It is unclear why this decision was made as sdr.hu was very popular with shortwave listeners and radio newbies who are typically not hams. But the sdr.hu FAQ notes "The purpose of the site is to serve amateur radio. I decided to restrict access to the receiver list in order to protect the site and its purpose in the long term."

Fortunately, over on his SWLing.com blog, Thomas has noted that there are still other KiwiSDR directories available such as https://ve3sun.com/KiwiSDR, http://kiwisdr.com/public and http://rx.linkfanel.net.

SDR.HU Requires a Login Now
SDR.HU Requires a Login Now

SingalsEverywhere: Running OpenWebRX on a PlutoSDR with PlutoWEB Firmware

Over on YouTube Corrosive from the SignalsEverywhere channel has uploaded a new video that shows how to install the the PlutoWEB Firmware on a PlutoSDR, which allows OpenWebRX to run directly on the PlutoSDR itself. OpenWebRX is a SDR streaming platform that enables people to connect to the SDR remotely over the internet. Multiple users can access the SDR at the same time as well. Many public OpenWebRX servers running on KiwiSDRs can be found at sdr.hu as the KiwiSDR uses it by default.

The PlutoSDR is a low cost (typically priced anywhere between $99 - $149 depending on sales) RX/TX capable SDR with up to 56 MHz of bandwidth and 70 MHz to 6 GHz frequency range. It also has an onboard FPGA and ARM Cortex-A9 CPU which can be used to run programs on the PlutoSDR itself.

Corrosive's video shows us how to install PlutoWEB which is an unofficial firmware package for the PlutoSDR. It comes preinstalled with many programs such as OpenWebRX and dump1090. He then shows how to set up OpenWebRX and then shows a demo of it in action.

OpenWebRX via PlutoSDR using PlutoWEB Firmware

Creating an Inmarsat STC-C EGC Live Stream with an RTL-SDR, Raspberry Pi and OpenWebRX

Thanks to Zoltan (aka Veryokay on YouTube) for submitting information about his Inmarsat STD-C EGC live stream setup. His setup allows him to access the Inmarsat STD-C signal from anywhere in the world over the internet, thanks to the use of an OpenWebRX server. Inmarsat STD-C is a geostationary satellite service that provides information for search and rescue, as well as news, weather and incident reports for mariners. We have a tutorial from a few years ago which shows some example messages. OpenWebRX is an efficient SDR streaming server platform that allows you to access RTL-SDR's and other SDRs from anywhere in the world via an internet connection.

In his setup Zoltan uses a Raspberry Pi 3, RTL-SDR Blog V3, L-band LNA and L-band antenna for receiving and processing the signal. Power is provided via a Power over Ethernet (PoE) adapter, and the whole thing is placed outside, in a weatherproof plastic lunchbox.

The video shows the hardware, and then goes on to describe the software setup, along with a demonstration of the OpenWebRX stream. More information as well as the link to his publicly accessible OpenWebRX Inamrsat STD-C stream can be found on his blog post.

INMARSAT STD-C EGC live streaming

Soft66IP: An OpenWebRX RTL-SDR Internet Server now Crowd Funding on Kickstarter

Over on Kickstarter a retrofit PCB for RTL-SDRs called Soft66IP has appeared for crowd funding. The PCB includes a 50 MHz upconverter and RF amplifier on board and incorporates space to plug in an Orange Pi Zero single board computer, and an RTL-SDR.

The project is by Kazunori Miura who is the creator of the Soft66 range of RTL-SDR retrofit products. The kickstarter appears to be for the "Soft66IP", which has been around since early 2017. The main difference appears to be that now OpenWebRX is preloaded on the SDCard, and that there is a custom script running on the Orange Pi Zero which allows you to choose between OpenWebRX and HDSDR. Presumably clicking on HDSDR runs an rtl_tcp server, which can then be connected over the network.

The idea is that this system will be used together with software like OpenWebRX, which would enable the RTL-SDR and radio stream to be accessed online from anywhere in the world via an Ethernet connection. Examples of OpenWebRX receivers can be found on sdr.hu, just search for "RTL-SDR" on the page to find relevant examples.

There are several support options, with the main board (without Orange Pi Zero or RTL-SDR) starting at US$22, and US$88 for the main board including RTL-SDR, Orange Pi Zero, enclosure and SD card. The system could probably be home built for much cheaper, but there is a convenience in purchasing a ready to use system. Although if you're interested in HF and want an internet connected SDR, then you might be better off shelling out for a $299 KiwiSDR instead, which is also an OpenWebRX based SDR.

Soft66IP: Main board + RTL-SDR + Orange Pi Zero.
Soft66IP: Main board + RTL-SDR + Orange Pi Zero.

PlutoWeb: Custom firmware for the PlutoSDR that enables you to Run OpenWebRX, dump1090 etc directly on the device

GitHub user unixpunk has been working on a custom firmware image for the PlutoSDR called 'PlutoWeb' (more info available on their website as well). The firmware allows you to run a web interface on the PlutoSDR and this allows you to run server programs such as OpenWebRX, Dump1090 and streaming servers like SoapyRemote. Because the PlutoSDR has a built in processor, this firmware can turn the SDR into a fully standalone device.

The PlutoSDR is an Analog Devices $99 RX/TX capable SDR with 20 MHz of bandwidth and a 325 MHz to 3.8 GHz frequency range that is software hackable to 56 Mhz of bandwidth and a 70 MHz to 6000 MHz frequency. It has an on board Xilinx Zynq Z-7010 FPGA, which has a built in dual core ARM Cortex-A9 processor as well. It has been out of stock for a while, but was recently restocked and can be purchased directly from Analog Devices, or via Arrow, DigiKey or Mouser.

If you're interested we previously did a review on the PlutoSDR, and have notes on enabling the software hack and setup available on this blog.

PlutoWeb Web Interface Running on the PlutoSDR.
PlutoWeb Web Interface Running on the PlutoSDR.

OpenWebRX now Supports the Airspy HF+

Thanks to Stefan Dambeck for letting us know that there is now a fork of libairspyhf made by DL9RDZ which contains an adapted version of airspyhf_rx (the raw IQ generator). This enables the Airspy HF+ to be easily integrated into OpenWebRX.

If you weren't aware, OpenWebRX is a browser based SDR interface and server software that allows an SDR to be used by multiple people at the same time over the internet. It performs audio demodulation and compression on the server side allowing for very low and efficient network usage.  In this way it is different to Airspy official server solution SpyServer which sends the IQ data over the network. So an OpenWebRX server uses significantly less network bandwidth and might be more suitable for those on slower or capped internet connections.

At the moment we're not seeing any public HF+ servers available on the OpenWebRX database at sdr.hu, but this may change in the future.

Airspy HF+ Running on the OpenWebRX Web Browser Interface
Airspy HF+ Running on the OpenWebRX Web Browser Interface

OpenWebRX Updates: 3D Waterfall and BPSK31 Demodulator

OpenWebRX has recently been updated and now includes a 3D waterfall display and a BPSK31 demodulator. OpenWebRX is a popular program which allows you to stream an SDR like the RTL-SDR over the internet efficiently. A number of clients can connect to your server and tune anywhere within a predefined bandwidth. Many examples of OpenWebRX running on RTL-SDRs and KiwiSDRs can be found on sdr.hu.

The 3D waterfall is quite an interesting feature as it allows you to visual signal strength, frequency and time all at once. BPSK31 is a popular amateur radio digital mode for making QSO’s (contacts). The new decoder allows you to zoom in closely on the band with high resolution and select with the mouse which BPSK31 channel you’d like to decode.

András Retzler, creator of OpenWebRX also writes that he’s now completed his Masters Thesis (congratutions!) on the topic of “Integrating digital demodulators into OpenWebRX”. His thesis is available for download here and looks to be an interesting read.

OpenWebRX BPSK31 Mode
OpenWebRX BPSK31 Mode