Category: HackRF

Reverse Engineering or Brute Forcing Wireless Powerplug Remote Controls with a HackRF One

Over on his blog "Foo-Manroot" has created a post where he shows us how he can control a wirelessly controlled powerplug with his HackRF. These power plugs can be used to turn electrically devices on or off remotely, and their wireless protocol is often simple On-Off Keying (OOK) with little to no security.

Foo-Manroot first explains how easily capture and replay a signal with the HackRF. If the signal is simple without any security like rolling codes then a simple replay attack like this will allow the HackRF to control the device quite easily. In the next section he goes on to explain how to actually analyze and synthesize the packets yourself using Python and GNU Radio. Finally he also shows that a brute force attack can be applied once you know how to synthesize the signal. Brute forcing runs over every possible packet combination in a short time and this can be pretty fast for simple protocols like those used in wireless remote controls. His post also includes all the GNU Radio files required so it is easy for someone to replicate his work easily.

If you are interested in controlling simple OOK devices like a wireless powerplug with replay attacks then we have a tutorial for doing this with a simple RTL-SDR and Raspberry Pi running RpiTX which might be useful for those who don't have a HackRF.

HackRF Controlling the Wireless Power Outlet by Brute Forcing Packets
HackRF Controlling the Wireless Power Outlet by Brute Forcing Packets

 

Reverse Engineering for a Secure Future: Talk by Samy Kamkar

During the Hackaday superconference held during November 2017, Samy Kamkar presented a talk on how he reverse engineers devices, and in particular passive entry and start systems in vehicles. In the talk he also explains what tools he uses which includes SDRs like the HackRF One and RTL-SDR dongle and explains the methodology that he takes when looking at how to reverse engineer any new device. Samy is most famous for writing the Samy MySpace computer worm and also popularizing the "RollJam" wireless car door vulnerability. The talk blurb reads:

In this talk Samy Kamkar shares the exciting details on researching closed systems & creating attack tools to (demonstrate) wirelessly unlocking and starting cars with low-cost tools, home made PCBs, RFID/RF/SDR & more. He describes how to investigate an unknown system, especially when dealing with chips with no public datasheets and undisclosed protocols. Learn how vehicles communicate with keyfobs (LF & UHF), and ultimately how a device would work that can automatically detect the makes/models of keyfobs nearby. Once the keyfobs have been detected, an attacker could choose a vehicle and the device can wirelessly unlock & start the ignition. Like Tinder, but for cars.

Securing the Bitcoin network against Censorship with WSPR

Bitcoin WSPR Test Setup
Bitcoin WSPR Test Setup

If you didn't know already Bitcoin is the top cryptocurrency which in 2017 has begun gaining traction with the general public and skyrocketing to a value of over $19,000 US per coin at one point. In addition to providing secure digital transactions, cryptocurrencies like Bitcoin are intended to help fight and avoid censorship. But despite this there is no real protection from the Bitcoin internet protocol being simply blocked and censored by governments with firewalls or by large ISP/telecoms companies.

One idea recently discussed by Nick Szabo and Elaine Ou at the "Scaling Bitcoin 2017" conference held at Stanford University is to use the something similar to WSPR (Weak Signal Propagation Reporting Network) to broadcast the Bitcoin network, thus helping to avoid internet censorship regimes. To test their ideas they set up a HackRF One as a transmitter and RTL-SDR and used GNU Radio to create a test system.

Other ideas to secure the Bitcoin network via censorship resistant radio signals include kryptoradio, which transmits the network over DVB-T, and the Blockstream satellite service which uses an RTL-SDR as the receiver.

If you're interested in the presentation the talk on WSPR starts at about 1:23 in the video below. The slides are available here.

Art Installation Eavesdrops on Hospital Pagers with a HackRF

HolyPager Art Installation. HackRF One, Antenna and Raspberry Pi seen under the shelf.
HolyPager Art Installation. HackRF One, Antenna and Raspberry Pi seen under the shelf.

For a long time now it has been known that pager data is sent in the clear and in plain text over a strong and easily received RF signal. The signal can easily be intercepted with a standard scanner radio or more recently with an SDR such as the RTL-SDR. Software such as PDW can then be used to decode the signal into plain text. We have a tutorial on this available here.

In these more modern days of cell phones and secure text messaging very few people still use pagers. But one heavy user of pagers is the medical community who still prefer them as they are already widely implemented in hospitals and are very reliable. The lower frequencies and high transmission powers used by pager systems allows for better reception especially in areas prone to poor cellphone reception such as in big buildings like hospitals with many walls underground areas. They are also very reliable as they receive messages instantly, whereas text messages can be delayed in times of high network traffic which is obviously a problem when a doctor is needed urgently. Finally, another advantage is that most pagers only receive, so there are no local transmissions that could interfere with sensitive medical machines. A major downside however is that pager use means that a lot of very private patient data can be easily intercepted by anyone anywhere in the same city as the hospital.

Back in October artist and programmer Brannon Dorsey displayed an art installation at the Radical Networks conference in Brooklyn which he calls Holypager. The idea is to bring attention to the breach of privacy. The installation simply prints out the pager messages as they are sent in real time, accumulating patient data that any visitor can pick up and read. He doesn't mention it on his page, but in one of the photos we see a HackRF One, antenna and Raspberry Pi hiding underneath the installation which is how the pager messages are received. A simple RTL-SDR could also be used as the receiver. Brannon writes:

Holypager is an art installation that intercepts all POCSAG pager messages in the city it resides and forwards them to one (holy) pager. The installation anonymizes all messages and forwards them randomly to one of three pagers on display. Each message is also printed on a contiguous role of receipt paper amassing a large pile of captured pages for gallery goers to peruse.

Pagers use an outdated protocol that requires all messages to be broadcast unencrypted to each pager in the area. It is the role of the individual pager to filter and display only the messages intended for its specific address. The pagers below have been reprogrammed to ignore this filter and receive every message in the city in real time. Today, these devices are primarily used in hospitals to communicate highly sensitive information between doctors and hospital staff.

Given the severity of the HIPPA Privacy Act, one would assume that appropriate measures would be taken to prevent this information from being publicly accessible to the general public. This project serves as a reminder that as the complexity and proliferation of digital systems increase the cultural and technological literacy needed to understand the safe and appropriate use of these systems often do not.

[Also seen on Hackaday and Motherboard]

Exploring Vulnerabilities in Tire Pressure Monitoring Systems (TPMS) with a HackRF

Over on YouTube the channel "Lead Cyber Solutions" has uploaded a video presentation for the Cyber Skills Competition. In the video Christopher Flatley, James Pak and Thomas Vaccaro discuss a man-in-the-middle attack that can be performed on vehicle Tire Pressure Monitoring Systems (TPMS) with a transmit capable SDR such as a HackRF.

A TPMS system consists of small battery powered wireless sensors placed on a vehicles wheels which automatically monitor tire pressure. An LCD basestation usually exists on the dashboard of the car indicating live tire pressure. Most modern cars come with this feature, and it is simple to retrofit an older car with an aftermarket TPMS system.

The idea behind the vulnerability is that a HackRF can be used to reverse engineer the TMPS signal, and then re-transmit a new fake signal that causes the base station to read the tire pressure as low. This can set off an alarm in the car and possibly cause someone to pull over. More alarmingly, they discuss how tractors have automatic tire inflation systems which work using similar sensors. A false low pressure reading could cause the tractor tires to over inflate and be damaged.

In the past we have also posted about Jared Boon's work on TPMS where he shows how privacy could be breached by monitoring and tracking TPMS identifiers.

Spectral Fusion with Sparrow-WiFi: SDR meets WiFi, Bluetooth, and drones in one new tool

Thanks to Mike (ghostop14) for submitting another interesting article this time about his work with spectral fusion on the WiFi and Bluetooth bands. In the article Mike describes his new Sparrow-WiFi tool, which is a tool that allows you to visualize the WiFi and Bluetooth signal spaces all in one spectral display. The hardware consists of a WiFi and Bluetooth dongle as well as optionally an SDR like the HackRF. The software displays all data simultaneously on the same display, so you can easily tell if there is some channel clashes occurring, or if there is some other source of interference. In Addition Sparrow-WiFi also works remotely and even with a Raspberry Pi mounted on a drone.

From the article he writes:

Thinking about the 2.4 and 5 GHz bands, my biggest issues with traditional wifi tools were always that apps such as inSSIDer which are great on the Windows side didn’t have a nice polished Linux GUI equivalent so I’d have to run a Windows system or virtual machine to visualize the signal space. On the flip side, some of the great Linux-only capabilities didn’t have a nice polished integrated UI and I’d have a lot of textual data, some of which the Windows tools didn’t provide, but it was harder to visualize. Then there’s the fact that wifi tools can’t “see” Bluetooth (and vice versa), and SDR historically didn’t have enough instantaneous bandwidth to show the whole 2.4 GHz or 5 GHz spectrum at one time. And, did I mention the tools don’t integrate or talk to each other so I can’t get a “single pane of glass” perspective of all the different ways to look at the same RF space simultaneously? It would be great if I could get one single view of the most common protocols and see the actual spectrum all in one place at the same time.

Now enter the era of the Internet-of-Things, new SDR receivers, and even drones and my old wifi tools seem to have been left a bit behind. Why do I say that? I can’t “see” all of the chatter from wireless networks, Bluetooth, ZigBee, NEST devices, remotes, etc. scattered all over my wireless bands in one view. Sure, I can run 3 or 4 tools independently to find the signals and try to see what they are, but it becomes tough to get a single integrated perspective. Especially when I can’t see my RF spectrum overlaid on top of the wifi SSID’s and Bluetooth advertisements to sort out what may be related to a a signal I know about and what may be something else. Ultimately, it means that I can’t clearly explain why I have poor wifi connections in one area versus another even though I may not have overlapping channels (I know, use 5 GHz and sparrow-wifi supports that too). The reason for this is simple; current tools don’t have true spectral awareness based on the most common possibilities in one integrated solution.

Now, let’s ask even harder questions. What if I want to step up my wifi “wardriving” and start “warflying”? Or, what if I need a mobile platform that can be sent into an area on a rover? Can I bring the same spectral awareness in a small enough platform to fly for example as an under-350-gram payload complete with power, wifi, spectral scans, and even pull GPS for anything we see? And, can I interact with it remotely for real-time visibility or have it work autonomously? Okay, now you’re just asking a lot. These were all goals of a new tool I just released called “Sparrow-wifi” which is now available on GitHub (https://github.com/ghostop14/sparrow-wifi.git). Sparrow-wifi has been purpose-built from the ground up to be the next generation 2.4 GHz and 5 GHz spectral awareness and visualization tool. At its most basic, it provides a more comprehensive GUI-based replacement for tools like inSSIDer and linssid and runs specifically on Linux. In its most comprehensive use cases, Sparrow-wifi integrates wifi, software- defined radio (HackRF), advanced Bluetooth tools (traditional and Ubertooth), GPS via gpsd, and drone/rover operations using a lightweight remote agent and GPS using the Mavlink protocol in one solution.

Sparrow-Wifi Spectral Fusion. Wifi & Bluetooth dongle data + Live spectrum from a HackRF.
Sparrow-Wifi Spectral Fusion. Wifi & Bluetooth dongle data + Live spectrum from a HackRF.

A full list of the possible scenarios that Sparrow-WiFi was designed for is pasted bleow.

  • Basic wifi SSID identification.
  • Wifi source hunt - Switch from normal to hunt mode to get multiple samples per second and use the telemetry windows to track a wifi source.
  • 2.4 GHz and 5 GHz spectrum view - Overlay spectrums from Ubertooth (2.4 GHz) or HackRF (2.4 GHz and 5 GHz) in real time on top of the wifi spectrum (invaluable in poor connectivity troubleshooting when overlapping wifi doesn't seem to be the cause).
  • Bluetooth identification - LE advertisement listening with standard Bluetooth, full promiscuous mode in LE and classic Bluetooth with Ubertooth.
  • Bluetooth source hunt - Track LE advertisement sources or iBeacons with the telemetry window.
  • iBeacon advertisement - Advertise your own iBeacons.
  • Remote operations - An agent is included that provides all of the GUI functionality via a remote agent the GUI can talk to.
  • Drone/Rover operations - The agent can be run on systems such as a Raspberry Pi and flown on a drone (it’s made several flights on a Solo 3DR), or attached to a rover in either GUI-controlled or autonomous scan/record modes. And yes, the spectrum output works over this connection as well.
  • The remote agent is HTTP JSON-based so it can be integrated with other applications
  • Import/Export - Ability to import and export to/from CSV and JSON for easy integration and revisualization. You can also just run 'iw dev <interface> scan' and save it to a file and import that as well.
  • Produce Google maps when GPS coordinates are available for both discovered SSID's / Bluetooth devices or to plot the wifi telemetry over time.
Sparrow WiFi running on a Raspberry Pi on a drone
Sparrow WiFi running on a Raspberry Pi on a drone

EOD Robots now packing USRP and HackRF Software Defined Radios

Thanks to the team of Robotics company Servosila for sharing the following press release with us which describes how their new EOD robot makes use of SDR technologies for electronic warfare.

We also wrote back to them and asked for a bit more information on the SDRs used. They wrote that there are two SDR options available for the EOD robot. Option one uses the Ettus Research USRP B205mini-i, and option two uses the HackRF One. This provides a good trade off between cost and functionality.

Servosila introduces Mobile Robots equipped with Software Defined Radio (SDR) payloads

Servosila introduces a new member of the family of Servosila “Engineer” robots, a UGV called “Radio Engineer”. This new variant of the well-known backpack-transportable robot features a Software Defined Radio (SDR) payload module integrated into the robotic vehicle.

“Several of our key customers had asked us to enable an Electronic Warfare (EW) or Cognitive Radio applications in our robots”, – says a spokesman for the company, “By integrating a Software Defined Radio (SDR) module into our robotic platforms we cater to both requirements. Radio spectrum analysis, radio signal detection, jamming, and radio relay are important features for EOD robots such as ours. Servosila continues to serve the customers by pushing the boundaries of what their Servosila robots can do. Our partners in the research world and academia shall also greatly benefit from the new functionality that gives them more means of achieving their research goals.”

Coupling a programmable mobile robot with a software-defined radio creates a powerful platform for developing innovative applications that mix mobility and artificial intelligence with modern radio technologies. The new robotic radio applications include localized frequency hopping pattern analysis, OFDM waveform recognition, outdoor signal triangulation, cognitive mesh networking, automatic area search for radio emitters, passive or active mobile robotic radars, mobile base stations, mobile radio scanners, and many others.

A rotating head of the robot with mounts for external antennae acts as a pan-and-tilt device thus enabling various scanning and tracking applications. The neck of the robotic head is equipped with a pair of highly accurate Servosila-made servos with a pointing precision of 3.0 angular minutes. This means that the robot can point its antennae with an unprecedented accuracy.

Researchers and academia can benefit from the platform’s support for GnuRadio, an open source software framework for developing SDR applications. An on-board Intel i7 computer capable of executing OpenCL code, is internally connected to the SDR payload module. This makes it possible to execute most existing GnuRadio applications directly on the robot’s on-board computer. Other sensors of the robot such as a GPS sensor, an IMU or a thermal vision camera contribute into sensor fusion algorithms.

Since Servosila “Engineer” mobile robots are primarily designed for outdoor use, the SDR module is fully enclosed into a hardened body of the robot which provides protection in case of dust, rain, snow or impacts with obstacles while the robot is on the move. The robot and its SDR payload module are both powered by an on-board battery thus making the entire robotic radio platform independent of external power supplies.

Servosila plans to start shipping the SDR-equipped robots to international customers in October, 2017.

Web: https://www.servosila.com
YouTube: https://www.youtube.com/user/servosila/videos

About the Company
Servosila is a robotics technology company that designs, produces and markets a range of mobile robots, robotic arms, servo drives, harmonic reduction gears, robotic control systems as well as software packages that make the robots intelligent. Servosila provides consulting, training and operations support services to various customers around the world. The company markets its products and services directly or through a network of partners who provide tailored and localized services that meet specific procurement, support or operational needs.

Servosila EOD Robot
Servosila EOD Robot

SDR Academy Talks: RPiTX TX for the Masses, Transmitter Localization with TDOA, HackRF as a Signal Generator and more

Over on YouTube the Software Defined Radio Academy channel has uploaded some new interesting SDR related conference talks, some of which may be of interest to readers. Some of our favorites are posted below. Other new interesting talks from channel include:

  • Derek Kozel, AG6PO, Ettus: Hardware Accelerated SDR: Using FPGAs for DSP (Link)
  • Mario Lorenz, DL5MLO: Across the Solar System – using SDRs for real long-distance communication (Link)
  • Andras Retzler, HA7ILM: Demodulators from scratch: BPSK31 and RTTY (Link)
  • Gerald Youngblood, K5SDR (President of FlexRadio): Direct Sampling and Benefits of the Architecture (Link)
  • Dr. Selmeczi Janos, HA5FT: A new lightweight data flow system (Link)
  • Chris Dindas, DG8DP: Standalone SDR-TRX, Highend – Lowcost – Homebrew (Link)
  • Erwin Rauh, DL1FY: Charly25 – SDR Transceiver Project – Community Development (Link)
  • Črt Valentinčič, S56GYC, Red Pitaya: HamLab (Link)

Evariste Courjaud, F5OEO: Rpitx : Raspberry Pi SDR transmitter for the masses

Low cost RTL-SDR democratize access to SDR reception, but is there an equivalent low cost solution for transmission : Rpitx is a software running on Raspberry Pi which use only GPIO to transmit HF. This presentation describes how to use it as a SDR sink but also describes details of how it is implemented using PLL available on the Raspberry Pi board. Warnings and limits of this simple SDR are also provided before going “on air”. Last paragraph shows what are potential evolutions of this system : low cost DAC and third party software integration.

Stefan Scholl, DC9ST: Introduction and Experiments on Transmitter Localization with TDOA

Time-Difference-of-Arrival (TDOA) is a well-known technique to localize transmitters using several distributed receivers. A TDOA system measures the arrival time of the received signal at the different receivers and calculates the transmitter’s position from the delays. The talk first introduces the basics of TDOA localization. It shows how to measure signal delay with correlation and how to determine the position using multilateration. It also covers further aspects and challenges, like the impact of signal bandwidth and errors in delay measurement, receiver placement and synchronization as well as the requirements on the network infrastructure. Furthermore, an experimental TDOA system consisting of three receivers is presented, that has been setup to localize signals in the city of Kaiserslautern, Germany. The three receivers are simple low-cost devices, each built from a Raspberry PI and a RTL/DVB-USB-Stick. They are connected via internet to a master PC, which performs the complete signal processing. The results demonstrate, that even with a simple system and non-ideal receiver placement, localization works remarkably well.

Frank Riedel, DJ3FR: The HackRF One as a Signal Generator

The usability and performance of the HackRF One SDR experimental platform as a signal generator up to 6 GHz is examined by means of an HPIB driven measurement system. The effective circuit of the HackRF One used in the CW TX mode is described and its components are linked to the parameters of the command line tool ‘hackrf_transfer’. The frequency accuracy of the HackRF One is measured against a frequency standard, output signal levels and spurious emissions are determined using a spectrum analyzer.