Tagged: weather satellite

A Worldwide Map for HRPT Weather Satellite Receive Stations

Recently Manuel (DO5TY aka Tysonpower from YouTube) wrote in and wanted to share his website that shows HRPT weather satellite receive stations from around the world on a map, and links to their Twitter pages where you can see the latest images that have been uploaded. The database also describes the SDR and antenna equipment used by each station. Currently there are 10 stations on the map, and Manuel encourages other people to submit their stations to the map database too. If you are interested in contributing your station to the map, please see Manuel's blog post for more information.

Since the satellite broadcasts a live image of what is currently being seen by the weather camera, each receiver location receives a live view of their part of the earth only. The end goal of Manuel's HRPT station map is to crowd source and collect multiple images of different parts of the earth to create a large HRPT composite image. In a previous post, Manuel who is based in Germany was able to create a beautiful composite image covering Germany, the Atlantic Ocean and Canada with the help of a station in Canada. With more contributors larger and more complete composite images of the Earth could be created.

HRPT is a high resolution weather satellite image signal that is broadcast from the same NOAA satellites that provide the more commonly received low resolution APT images at 137 MHz. HRPT is also broadcast from the Feng Yun and Metop-A satellites. However, HRPT transmits at 1.7 GHz, so a high gain dish antenna with motorized tracking mount, LNA and high bandwidth SDR like an Airspy is required to receive it.

HRPT Station Map
HRPT Station Map

XRIT Decoder Updated: Improved Image Quality and IR Enhancements

USA-Satcom is the programmer of XRIT Decoder, which is a popular (paid) Windows decoding application for GOES weather satellites. With a WiFi grid dish antenna, LNA and SDRplay, Airspy or even an RTL-SDR, high resolution full disk images of the earth can be downloaded from these geosynchronous satellites. Browse through our previous GOES posts for ideas and various tutorials about setting up a receiver.

Recently, XRIT decoder has been updated and now has improved image quality and an antenna alignment helper tool. A further update also adds improved processing for IR images. Over on the SDRplay forums RSP2user has been testing the updates and writes:

USA- Satcom has just released version 1.4.6985 of the XRIT Decoder software package. New features include:

1) Improved image clarity.

2) An antenna Align Mode feature.
3) And a Viterbi and Eb/No (Energy per Bit to Noise Power Spectral Density Ratio akanormalized SNR) graph over time feature. 

The improved image clarity reduces image artifacts at the Earth-space boundary of the image and improves the overall aesthetics of the colorization of the full disk images. The images are quite amazing. The resolution is far better than what can be shown here due to image size limitations for this site. Below is a full disk GOES 16 image from February 17, 2019 and a corresponding zoomed in portion to get an idea of the resolution and clarity (the actual full disk images are approximately 40MB PNG images each which are much greater resolution than the below image)

The antenna Align Mode is a great new feature that allows users to view the Signal Quality, Viterbi FEC, and Eb/No from a distance using large numeric values. This mode enables users to better view these values when fine tuning adjustments to GOES receiving antennas. The Eb/No and Viterbi graphing enables users to see how well their receiving system is doing throughout the day (e.g., over temperature and while the sun is in alignment with the receiving path).

GOES 16 Received by RSP2User
GOES 16 Received by RSP2User

More updates from USA-Satcom to the XRIT Decoder software with a new patch from today. The XRIT file manager now provides IR image enhancements for GOES Bands 8 and 13. Here are some examples:

G16 CH13 & G16 Band8 Enhancements . Images received by RSP2user.
G16 CH13 & G16 Band8 Enhancements . Images received by RSP2user.

See the post on the SDRplay forums for further details, higher res images and the full update history.

YouTube Tutorial: Software Set up for a Portable Raspberry Pi and RTL-SDR Based NOAA Weather Satellite Receiver

Last year in December we posted about Matt's element14 sponsored video which showed us how to create a portable briefcase contained NOAA satellite received based on a Raspberry Pi and RTL-SDR dongle. The build consisted of a heavy duty briefcase, modified ATX PSU and stripped down LCD monitor panel. This build resulted in a rugged and portable receiver. The full series of videos demonstrating the briefcase, ATX PSU conversion, LCD teardown, and NOAA satellite receiver demo can be found on his YouTube Playlist.

In his latest video Matt goes over the software installation procedure for creating an automated NOAA weather satellite receiver on the Raspberry Pi. He uses gpredict for predicting the satellite passes, and the Raspberry Pi version of WXtoImg for decoding the images. The rest of the video shows how to set up the software for your particular location, and how to set up decoding automation.

How To Set Up a Raspberry Pi as a NOAA Satellite Receiver with RTL-SDR

Video Showing How to Decode Meteor M2 with an SDRPlay in Windows

Thanks to "Lolo sdr" for submitting his videos that show his process for receiving and decoding Meteor M2 weather satellite images in Windows with an SDRplay and SDR-Console V3. Since the SDRplay is not supported by SDR#, it is not possible to use Vasilli's excellent Meteor Demodulator plugin (site in Russian, please use the Google Translate option) which is only available for SDR#.

Lolo's method gets around this limitation by initially recording an IQ file of the satellite pass in SDR-Console V3, then opening that IQ file in SDR# via the Fileplayer plugin, which is also by Vasilli and available here. The process is a bit of extra work, and the image isn't live, but the image comes out clearly in the end.

The videos are shown below, and subtitles are available in English, French and Italian via the YouTube player options.

Recibir y decodificar Satélite Meteor M2 con SDRplay, parte 1 de 2, grabar el pase, con subtitulos.

Recibir y decodificar Satélite Meteor M2 con SDRplay, parte 2 de 2, decodificar imagen y corrección.

Element14 Video on Setting up a Portable Raspberry Pi & RTL-SDR Based NOAA Weather Satellite Receiver

Electronics distributor element14 has uploaded a video to their 'element14 presents' YouTube channel showing presenter Matt building and setting up a portable Raspberry Pi & RTL-SDR based NOAA weather satellite receiver. More information is also available on their supplemental content page.

The build consists of a Raspberry Pi, RTL-SDR and QFH antenna as the basic components. However, it is made into a very nice portable unit by using a stripped down LCD monitor placed into a heavy duty waterproof brief case. The whole thing is powered via a PC power supply. After the build is completed, Matt leaves the case on the roof for a few days collecting images.

Emboldened by the success of his Raspberry PIrate radio, Matt indulges in some more radio hacking by building a specialized QFH antenna and a briefcase form-factor satellite receiver in an attempt to intercept "faxes" from OUTER SPAACEEE!!! Connect with Matt on the element14 community: http://bit.ly/2RiSXC5

Project TIROS is a self-contained, Raspberry Pi-based satellite signal reception system designed to automatically download images and data from NOAA's POES spacecraft as they pass overhead and display the data on an integrated LCD panel. In this video, Matt will walk through how to set up an RTL-SDR module with a Raspberry Pi for automated satellite downloads as well as how to design and build a quadrifilar helical antenna for polar-orbiting signal reception.

Raspberry Pi NOAA Satellite Receiver

USA-Satcom XRIT Decoder Updated

USA-Satcom is the programmer of XRIT Decoder (not to be confused with XRITDecoder by CM2ESP), which is a popular (paid) Windows decoding application for GOES weather satellites. Recently, over on the SDRplay forums RSP2user made a note about the latest update:

USA-Satcom has just released v2.1.0.0 of the XRIT Decoder. Along with enhancements for the XRIT Decoder, a new RSP Streamer X has been released and is operable with the RSP1A, RSP2, and RSPduo - new features include operation with two streams simultaneously (provided that the PC being used has sufficient processing power and an RSPduo or more than one compatible RSP are being used). Also new is the XRIT File manager which allows for improved operation with both LRIT and HRIT files, improved LUT for excellent false color images, user-selectable automated black filling of the white background on full disk visual and false color HRIT images, and country as well as state map overlays.

The new color enhancements are excellent:

GOES 16 Full Disk Weather Satellite Image. Received by RSP2user with V2.1.0.0 of XRIT Decoder.
GOES 16 Full Disk Weather Satellite Image. Received by RSP2user with V2.1.0.0 of XRIT Decoder.

If you are interested in receiving and decoding GOES images, we now have several previous blog posts on this topic which may be helpful.

Combining HRPT Images From Germany to Canada

HRPT is a high resolution weather satellite image that is broadcast by the NOAA satellites. Receiving HRPT weather satellite signals is a little different to the more commonly received NOAA APT or Meteor M2 LRPT images which most readers may already be familiar with. HRPT is broadcast by the same NOAA satellites that provide the APT signal at 137 MHz, but is found in the L-band at around 1.7 GHz. The signal is much weaker, so a high gain dish antenna with motorized tracking mount, LNA and high bandwidth SDR like an Airspy is required. The payoff is that HRPT images are much higher in resolution compared to APT.

Manuel aka Tysonpower on YouTube has been successfully receiving these HRPT images for some time now and recently had the idea to try and combine two HRPT images together to create one big image covering the Atlantic ocean.

Manuel lives in Germany and on Twitter he found that he had a follower in Canada who was also receiving HRPT images. So he asked his follower to provide him with HRPT weather images that were received shortly after the pass in Germany. He then stitched the images together, and color corrected them which resulted in a nice large image covering Europe, the Atlantic, Canada and Florida.

[EN subs] HRPT over The Ocean - Ein Bild von Köln nach Kanada

A Complete Linux based Receiver and Decoder Application for Meteor M2

Thank you to Neoklis (5B4AZ) for writing in and letting us know about his recently completed project which is a RTL-SDR compatible receiver and decoder application for the Meteor M2 weather satellite. It is a combination of other open source programs and he writes:

I combined the recently released Meteor-M2 LRPT demodulator by Davide Belloli (dbdexter-dev), and the older image decoder (translated to C) released by Artem Litvinovich (artlav), with relevant code from my own "sdrx" SDR Receiver application to create a complete monolithic Meteor-M2 Receiver and Image Decoder application, "glrpt".

Neoklis' glrpt application is available on his website www.5b4az.org under the "Weather Imaging -> Meteor M LRPT Receiver" menu. The application is open source and appears to be Linux only. In order to install it you'll need to download and compile the source code, and compilation instructions are available in the documentation stored in the doc folder. Neoklis also writes that you can find his older APT image decoder called "xwxapt" under the same Weather Imaging heading of his website.

GLRPT User Interface Showing Processed Meteor M2 Images
GLRPT User Interface Showing Processed Meteor M2 Images