Category: Radio Astronomy

Radio Jove Spectrograph Hardware and Software

NASA's Radio Jove is a project that enables students and amateur scientists from around the world to observe and analyze the HF radio emissions from Jupiter, our Sun and our galaxy using easy to construct HF radio telescopes that receive spectrographs from 16-24 MHz. The project has existed for more than two decades, and these days the telescope builds mostly make use of low cost software defined radios.

In a presentation for the Society of Amateur Radio Astronomers (SARA) Richard Flagg & Jim Sky talk about what sort of hardware is used these days for the Radio Jove project. They note that SDRs like the Softrock, Funcube Dongle Pro+, SDR-IQ, SDR-14, RTL-SDR, and RASDR have been used. They go on to discuss some of the spectrograph logging software that is used with the project as well.

The presentation slides in PDF form can be found here.

Richard Flagg & Jim Sky: Radio Jove Spectrograph Hardware and Software (RJ10/11)

WiFi Grid RTL-SDR Radio Telescopes featured in SARA2022 Conference Talks

Over on YouTube the Society of Amateur Radio Astronomers have recently uploaded talks from their SARA 2022 online conference. Two of the talks we've seen focus on describing results produced by small and cheap WiFi Grid RTL-SDR radio telescopes.

Back in early 2020 we first published an article about how it is possible to use get into amateur radio astronomy cheaply using off the shelf WiFi grid dishes, combined with a 1420 MHz LNA + filter, an RTL-SDR and the SDR# software with IF average plugin to measure the galactic hydrogen line.

In the SARA conference we've seen two talks expanding on the use of WiFi grids for radio astronomy. In the first talk Alex Pettit discusses how he's used a WiFi grid attached to an equatorial telescope mount, and a custom modified feed in his setup. In his talk he explains how to use the IF average plugin, and how he uses a MATLAB script to process and plot the saved data.

Alex Pettit: Galactic Hydrogen 1.42 GHz RF Emission Radio Astronomy for $300

In the second talk Charles Osborne describes his "Scope-In-A-Box" which consists of the WiFi Grid, LNA, Filter and RTL-SDR combination and compare the setup versus the same hardware used on a larger 3.7m dish.

Charles Osborne: Comparing Scope-in-A-Box to a 3.7m Dish

If you were interested in those talks, you might also want to check out the other talks from the conference, many of which also involve the use of software defined radios in the receive chain for various amateur radio astronomy experiments.

Pulsar B0329+54 Detected with a 1.9m Dish and RTL-SDR

Over the past few years Job Geheniau has been constantly surprising us with his amateur radio astronomy results coming from modest dish sizes and low cost SDR equipment like an RTL-SDR. We've seen him perform full sky hydrogen line surveys, measure galactic rotation, image the Cygnus star forming region, image the Cassiopeia A supernova remnant, detect interstellar high velocity clouds and observe a red supergiant star.

Job's latest work has seen him detect Pulsar B0329+54 with his 1.9m dish and an RTL-SDR. He writes:

A pulsar is the rapidly spinning and pulsating remnant of an exploded star.

PSR B0329+54 is a pulsar approximately 3,460 light-years away in the constellation of Camelopardalis. It completes one rotation every 0.71452 seconds and is approximately 5 million years old

Everything indicates that I may have been able to detect the pulsar B0329+54 with JRT [Job's Radio Telescope]. This dish has a diameter of 1.9 meters, which would make it the first time (!) this pulsar has been detected with a dish of this size as far as I can tell. This result was obtained thanks to the good help and software of Michiel Klaassen.

Job has also provided a PDF file that documents his setup and results in more detail, which we have uploaded to our server here.

Detecting Interstellar High-Velocity Clouds with a Radio Telescope and an RTL-SDR

Over on Facebook Job Geheniau has recently described his success in detecting interstellar high-velocity clouds with his telescope consisting of a 1.8 meter dish, amplifiers, band pass filters, and an RTL-SDR.

High-velocity clouds or HVC's are areas of interstellar gas that are moving at very high velocities relative to that of the galactic rotation.

Job has been ticking off some amazing amateur radio astronomy milestone results recently with his radio telescope and RTL-SDR. So far he has managed to image the Cygnus star forming region, complete a Hydrogen line survey of the northern sky, measure the galactic rotational curve, and create a radio image of the milky way.

His latest post about detecting high velocity clouds reads:

 

CIII High Velocity Cloud detected with 1.8 meter JRT.

The receiver was a RTLSDR connected to some amplifiers, band pass filter and a 1.8 meter dish.

HIGH VELOCITY CLOUD CIII with JRT (Job’s Radio Telescope)

Wikipedia:
“High-velocity clouds (HVCs) are large collections of gas found throughout the galactic halo of the Milky Way. These clouds of gas can be massive in size, some on the order of millions of times the mass of the Sun and cover large portions of the sky. They have been observed in the Milky Way's halo and within other nearby galaxies.

HVCs are important to the understanding of galactic evolution because they account for a large amount of baryonic matter in the galactic halo. In addition, as these clouds fall into the disk of the galaxy, they add material that can form stars in addition to the dilute star forming material already present in the disk. This new material aids in maintaining the star formation rate (SFR) of the galaxy.

The origins of the HVCs are still in question. No one theory explains all of the HVCs in the galaxy. However, it is known that some HVCs are probably spawned by interactions between the Milky Way and satellite galaxies, such as the Large and Small Magellanic Clouds (LMC and SMC, respectively) which produce a well-known complex of HVCs called the Magellanic Stream. Because of the various possible mechanisms that could potentially produce HVCs, there are still many questions surrounding HVCs for researchers to study.”

My detection:

For JRT the High Velocity Clouds are pretty hard to detect.

The Anti Center Complex is the easiest which I detected earlier last year.

This week I tried C III. It’s at Galactic Coordinates 120 50 and has a Vlsr of -140 km/s. You can find it on the chart:

In the simulation it looks like this:

Pay attention the low Brightness Temperature (0.3 Kelvin) compared for instance with Deneb (80 Kelvin)! Pretty hard to detect with my dish.

With JRT I did a 4 hour exposure (also 4 hours of Darks in the neighborhood) at 1420.405 MHz.

The new Feed I built is very good and has a perfect ‘pitch’ at gain 25 dB.

The final result for High Velocity Cloud CIII with my 1.8 meter dish:

 

Observing the NML Cygni Red Supergiant Star with an Airspy Mini SDR and Home Radiotelescope

Job Genheniau's projects have been featured several times on this blog in the past for imaging the Milkyway and other astronomical objects like supernova's and protostar regions with a 1.8m radiotelescope dish and RTL-SDR or similar SDR.

In his latest achievement Job has noted that he has had some limited success in observing  NML Cygni with his dish and an Airspy Mini SDR. NML Cygni is a 'red hypergiant' star situated within the Cygnus constellation, and it is one of the largest stars by radius known. Prior observations have found that it exhibits a spectral line at 1612.231 MHz.

Job's setup consists of his 1.5m dish (extended to 1.8m with mesh) on a rotor, a custom feed tuned for 1612 MHz, a 0.47dB NF low noise amplifier, an RF filter and an Airspy Mini SDR. Observations were made in SDR# and plotted with Excel.

The NML Cygni hypergiant is difficult for amateur's to observe, and Job notes that he is not aware of anyone previously observing it with a 1.8m dish. He notes that he had 20 failed attempts, but 5 recordings that stood out as possible successes.

However, ultimately Job has been unable to claim that the star was successfully observed, but his results to appear to show some possible success. He notes that some of the uncertainty stems from the fact that on some recordings he observed the peak at the expected -25 km's blueshift expected from the star, however other recordings had the peak at the wrong blueshift.

Job's full report on his observations can be found in this PDF document.

The NML Cygni Red Hypergiant observed with 1.8m dish and Airspy SDR.

SDRAngel Features Overview: ADS-B, APT, DVB-S, DAB+, AIS, VOR, APRS, and many more built-in apps

SDRAngel is a general purpose software defined radio program that is compatible with most SDRs including the RTL-SDR. We've posted about it several times before on the blog, however we did not realize how much progress has occurred with developing various built in plugins and decoders for it.

Thanks to Jon for writing in and sharing with us a demonstration video that the SDRAngel team have released on their YouTube channel. From the video we can see that SDRAngel now comes stock with a whole host of built in decoders and apps for various radio applications making it close to an all-in-one SDR platform. The built in applications include:

  • ADS-B Decoder: Decodes aircraft ADS-B data and plots aircraft positions on a map
  • NOAA APT Decoder: Decodes NOAA weather satellite images (in black and white only)
  • DVB-S: Decodes and plays Digital TV DVB-S and DVB-S2 video
  • AIS: Decodes marine AIS data and plots vessel positions on a map
  • VOR: Decodes VOR aircraft navigational beacons, and plots bearing lines on a map, allowing you to determine your receivers position.
  • DAB+: Decodes and plays DAB digital audio signals
  • Radio Astronomy Hydrogen Line: With an appropriate radio telescope connected to the SDR, integrates and displays the Hydrogen Line FFT with various settings, and a map of the galaxy showing where your dish is pointing. Can also control a dish rotator.
  • Radio Astronomy Solar Observations: Similar to the Hydrogen line app, allows you to make solar measurements.
  • Broadcast FM: Decoding and playback. Includes RDS decoding.
  • Noise Figure Measurements: Together with a noise source you can measure the noise figure of a SDR.
  • Airband Voice: Receive multiple Airband channels simultaneously
  • Graves Radar Tracker: For Europeans, track a satellite and watch for reflections in the spectrum from the French Graves space radar. 
  • Radio Clocks: Receive and decode accurate time from radio clocks such as MSF, DCF77, TDF and WWVB.
  • APRS: Decode APRS data, and plot APRS locations and moving APRS enabled vehicles on a map with speed plot.
  • Pagers: Decode POCSAG pagers
  • APRS/AX.25 Satellite: Decode APRS messages from the ISS and NO-84 satellites, via the built in decoder and satellite tracker.
  • Channel Analyzer: Analyze signals in the frequency and time domains
  • QSO Digital and Analog Voice: Decode digital and analog voice. Digital voice handled by the built in DSD demodulator, and includes DMR, dPMR and D-Star.
  • Beacons: Monitor propagation via amateur radio beacons, and plot them on a map.

We note that the video doesn't show the following additional features such as an analog TV decoder, the SDRAngel "ChirpChat" text mode, a FreeDV decoder and several other features.

Imaging the Cassiopeia A Supernova Remnant with an RTL-SDR and Amateur Radio Telescope

Just a few days ago we posted about Job Geheniau's success at radio imaging the Cygnus-X star forming region at 1424 MHz with a 1.9m radio telescope, an RTL-SDR and some additional filtering and LNAs.

Now in his latest post on Facebook Geneniau has also shown that he has successfully imaged Cassiopeia A with the same equipment. Cassiopeia A is a supernova remnant known for being the "brightest extrasolar radio source in the sky at frequencies above 1 GHz" [Wikipedia]. Geheniau writes:

A new observation from JRT. These are driftscans of Cassiopeia A to make a radio plot. Several driftscans are made last week and combined. Always nice to see whats possible with a 1.5-1.9 meter dish. 2 LNA's and a bandpass filter, connected to a RTL-SDR at 1424 MHz. Happy that I got Cygnus complex and now Cassiopeia A which is the second radio source which is possible to receive with this dish.

The dish is fully remote controlled 50 km away.

Job Geheniau - The Netherlands

Cassiopeia A Radio Imaged with an RTL-SDR and 1.9m dish
Job's Radio Telescope

Imaging the Cygnus Star Forming Region with an RTL-SDR and Amateur Radio Telescope

Over on Facebook Job Geheniau has posted results from his latest radio astronomy experiment which involves imaging the Cygnus-X star forming region at 1424 MHz with a 1.9m radio telescope, an RTL-SDR and some additional filtering and LNAs. In the past we've posted about Geheniau's previous work which involved imaging the entire Milky Way at 1420 MHz, and measuring the basis for the dark matter hypothesis with a similar process and the same equipment. His latest post reads:

Cygnus-X is a massive star-forming region in the constellation Cygnus at a distance of 1.4 kiloparsecs (4600 light-years) from the Sun.

Cygnus-X has a size of 200 parsecs and contains the largest number of massive protostars and the largest stellar association within 2 kiloparsecs of the Sun. Cyg X is also associated with one of the largest molecular clouds known, with a mass of 3 million solar masses.
[Wikipedia]

The idea:
To take a radio picture of the Cygnus complex (Cygnus A + Cygnus X) with my 1.9 meter radio telescope.
Equipment:
1.5 - 1.9 meter radio telescope
Mini Circuits LNA ZX60-ULN33+
Bandpass filter 1200-1700 MHz
2nd LNA
RTL-SDR
VirgoSoft

Implementation:
Multiple 4-hour drift scans of the Cygnus complex and beyond.
In order not to be affected by HI at 1420 MHz, measurements were made at 1424 MHz. At this frequency there is Synchrotron radiation and no neutral hydrogen emission.
To be sure that no Milky Way synchrotron radiation is measured there would be no or hardly any measurable power change outside the Cygnus complex during the drift scan. This was also observed in these measurements and also confirmed earlier in test measurements.

A total of 7 drift scans of 4 hours were made at 1424 MHz. Because the start of the driftscan generates a lot of wrong data (the 'cooling down/warming up' of the RTL-SDR), this has been removed in the measurements.
The measurement starts at 2000 seconds and is always aborted at 12000 seconds in post-processing.

7 shots from RA 19 to RA 22. The declination varied each observation from DEC 36 to 43 degrees.

Because not every driftscan was perfect (heavy clouds gave worse results anyway as well as wind/rain or rfi) a total of 15 measurements were done, of which 7 were thus acceptable enough for editing.

In the end JRT performed measurements from 24 September to 9 October. Patience is a good thing.

Results:
By editing the driftscan data in Excel with Conditional Format (giving color to the data) the final result is a 'radio photo' of the complex.

Of course, in view of the dish diameter, the beam is 8 degrees and thus a somewhat rough image of the Cygnus complex is sketched here.

Job Geheniau - Netherlands.

Cygnus-X Imaged at 1424 MHz with an RTL-SDR based home radio telescope.