Category: Radio Astronomy

Using the GRAVES Radar to Listen to Reflections from Meteors, Planes and Spacecraft

Over on his blog DK8OK has created a post that explains how European SDR users can use their devices to monitor reflections coming off the Graves space radar. Graves is a space surveillance radar based in France which is designed to track spacecraft and orbital debris.

If you are in Europe you can also make use of the Graves radar simply by tuning to its frequency of 143.050 MHz and listening for reflections of its signal bouncing off things like meteors, planes and spacecraft. Since Graves points its signal upwards, it’s unlikely that you’ll directly receive the signal straight from the antenna, instead you’ll only see the reflections from objects.

DK8OK also explains in his post how you can use SDR-Console V3 to create a level diagram which shows power vs time, allowing you to count reflections and visualize the response of the reflection.

Any SDR that can tune to VHF frequencies such an an RTL-SDR can be used for monitoring reflections like this. If you aren’t in Europe you might consider looking for distant strong transmitters such as for TV/FM which you could also monitor for reflections.

Graves reflection of a meteor trail visualized in SDR-Console V3.
Graves reflection of a meteor trail visualized in SDR-Console V3.

Building a Hydrogen Line Front End on a Budget with RTL-SDR and 2x LNA4ALL

Adam 9A4QV is the manufacturer of the LNA4ALL, a high quality low noise amplifier popular with RTL-SDR users. He also sells filters, one of which is useful for hydrogen line detection. Recently he’s uploaded a tutorial document showing how to use 2x LNA4ALL, with a filter and RTL-SDR for Hydrogen Line detection (pdf warning). 

Hydrogen atoms randomly emit photons at a wavelength of 21cm (1420.4058 MHz). Normally a single hydrogen atom will only very rarely emit a photon, but since space and the galaxy is filled with many hydrogen atoms the average effect is an observable RF power spike at 1420.4058 MHz. By pointing a radio telescope at the night sky and integrating the RF power over time, a power spike indicating the hydrogen line can be observed in a frequency spectrum plot. This can be used for some interesting experiments, for example you could measure the size and shape of our galaxy. Thicker areas of the galaxy will have more hydrogen and thus a larger spike.

In his tutorial Adam discusses important technical points such as noise figure and filtering. Essentially, when trying to receive the hydrogen line you need a system with a low noise figure and good filtering. The RTL-SDR has a fairly poor noise figure of about 6dB at 1420MHz. But it turns out that the first amplifier element in the receive chain is the one that dominates the noise figure value. So by placing an LNA with a low noise figure right by the antenna, the system noise figure can be brought down to about 1dB, and losses in coax and filters become negligible as well. At the end of the tutorial he also discusses some supplementary points such as ESD protection, bias tees and IP3.

One note from us is that Adam writes that the RTL-SDR V3 bias tee can only provide 50mA, but it can actually provide up to 200mA continuously assuming the host can provide it (keep the dongle in a cool shaded area though). Most modern USB 2.0 and USB3.0 ports on PCs should have no problem providing up to 1A or more. We’ve also tested the LP5907 based Airspy bias tee at up to 150mA without trouble, so the 50mA rating is probably quite conservative. So these bias tee options should be okay for powering 2xLNA4ALL.

Finally Adam writes that in the future he will write a paper discussing homebrew hydrogen line antennas which should complete the tutorial allowing anyone to build a cheap hydrogen line radio telescope.

One configuration with 2xLNA4ALL, 1x interstage filter, and 1x recceiver side filter with bias tee.
One configuration with 2xLNA4ALL, 1x interstage filter, and 1x recceiver side filter with bias tee.

Using National Weather Service Stations for Forward Scatter Meteor Detection

Over on his blog Dave Venne has been documenting his attempts at using National Weather Service (NWS) broadcasts for forward scatter meteor detection with an RTL-SDR. Forward scatter meteor detection is a passive method for detecting meteors as they enter the atmosphere. When a meteor enters the atmosphere it leaves behind a trail of highly RF reflective ionized air. This ionized air can reflect far away signals from strong transmitters directly into your receiving antenna, thus detecting a meteor.

Typically signals from analog TV and broadcast FM stations are preferred as they are near the optimal frequency for reflection of the ionized trails. However, Dave lives in an area where the broadcast FM spectrum is completely saturated with signals, leaving no empty frequencies to detect meteors. Instead Dave decided to try and use NWS signals at 160 MHz. In the USA there are seven frequencies for NWS and they are physically spaced out so that normally only one transmitter can be heard. Thus tuning to a far away station should produce nothing but static unless a meteor is reflecting its signal. Dave however does note that the 160 MHz frequency is less than optimal for detection and you can expect about 14 dB less reflected signal from meteors.

So far Dave has been able to detect several ‘blips’ with his cross-dipole antenna, RTL-SDR and SDR#. He also uses the Chronolapse freeware software to perform timelapse screenshots of the SDR# waterfall, so that the waterfall can be reviewed later. Unfortunately, most of the blips appear to have been aircraft as they seem to coincide with local air activity, and exhibit a Doppler shift characteristic that is typical of aircraft. He notes that the idea may still work for others who do not live near an airport.

A possible meteor detection in SDR#.
A possible meteor detection in SDR#.
Aircraft detection doppler
Aircraft detection doppler

We note that if you are interested in detecting aircraft via passive forward scatter and their Doppler patterns, then this previous post on just that may interest you.

Receiving Jupiter Noise Bursts with an SDRplay RSP1

Over on YouTube user MaskitolSAE has uploaded a video showing him receiving some noise bursts from Jupiter with his SDRplay RSP1. The planet Jupiter is known to emit bursts of noise via natural ‘radio lasers’ powered partly by the planets interaction with the electrically conductive gases emitted by Io, one of the the planets moons. When Jupiter is high in the sky and the Earth passes through one of these radio lasers the noise bursts can be received on Earth quite easily with an appropriate antenna 

In his video MaskitolSAE shows the 10 MHz of waterfall and audio from some Jupiter noise bursts received with his SDRplay RSP1 at 22119 kHz. According to the YouTube description, it appears that he is using the UTR-2 radio telescope which is a large Ukrainian radio telescope installation that consists of an array of 2040 dipoles. A professional radio telescope installation is not required to receive the Jupiter bursts (a backyard dipole tuned to ~20 MHz will work), but the professional radio telescope does get some really nice strong bursts as seen in the video.

The UTR-2 Radio Telescope. Photo Attr. Oleksii Tovpyha (Link)

Detecting Pulsars with a Circularly Polarized Yagi and an RTL-SDR

Steve Olney VK2XV is the creator and administrator of the Neutron Star Group website which collects a listing of confirmed amateur attempts at pulsar detection, many of which have been made with a humble RTL-SDR dongle. A pulsar is a rotating neutron star that emits a beam of electromagnetic radiation. If this beam points towards the earth, it can then be observed with a large dish antenna and a radio, like the RTL-SDR.

Now after more than four years of trying, Steve has finally been able make his own confirmed pulsar detection by using a 42-elment circularly polarized Yagi antenna tuned for 436 MHz and an RTL-SDR. Typically a large dish antenna is used to receive a pulsar, but Steve has instead used a fixed position circularly polarized Yagi antenna, which he writes has an equivalent aperture to a 2.8 meter diameter dish. His antenna can point directly upwards as his target is the Vela pulsar which happens to pass almost directly overhead at his location.

Detection of a pulsar involves determining its rotational period from the regular wideband noise pulses that they produce. Pulsar detections with large aperture dish antennas can easily be confirmed due to high SNR, but smaller weaker detectors require some use of some mathematical techniques to confirm a positive detection. This is especially important as it’s possible for terrestrial signals to mimic a pulsar. 

In order to detect and confirm the pulsar detection from a weak signal, Steve uses a technique called epoch folding, which makes use of the fact that the period of pulsar pulses are extremely regular. To verify the results he also makes use of techniques such as folding at the predicted period, de-dispersion and plotting daily results against the predicted results. These techniques are explained in more depth in his results post.

Steve's Results showing the detected pulsar period and his CP Yagi Antenna
Steve’s Results showing the detected pulsar period and his CP Yagi Antenna

A Screenshot based Meteor Scatter Detector for HDSDR

Over on our forums Andy (M0CYP) has posted about his new meteor scatter detection program which works with HDSDR and any supported SDR like an RTL-SDR. It works in an interesting way, as instead of analyzing sound files for blips of meteor scatter activity it analyzes screenshots of the HDSDR waterfall. The software automatically grabs the screenshots and determines if a signal is present on any given frequency. You can set a preconfigured detection frequency for a far away transmitter, and if the waterfall shows a reflection it will record that as a meteor.

Meteor scatter works by receiving a distant but powerful transmitter via reflections off the trails of ionized air that meteors leave behind when they enter the atmosphere. Normally the transmitter would be too far away to receive, but if its able to bounce off the ionized trail in the sky it can reach far over the horizon to your receiver. Typically powerful broadcast FM radio stations, analog TV, and radar signals at around 140 MHz are used. Some amateur radio enthusiasts also use this phenomena as a long range VHF communications tool with their own transmitted signals. See the website for a livestream of a permanently set up RTL-SDR meteor detector (although that site does not use Andy’s software).

Andy writes that his meteor scatter detection software is still in beta so there might be some bugs. You can write feedback on the forum post, in the comments here, or contact Andy directly via the link on his website.

Andy's screenshot based meteor detection software
Andy’s screenshot based meteor detection software

An Overview of Neutron Star Group Pulsar Detection Projects with the RTL-SDR

Earlier in April we posted about Hannes Fasching (OE5JFL)’s work in detecting pulsars with an RTL-SDR. Thanks to Steve Olney (VK2XV), administrator of the Neutron Star Group for pointing out that there are actually several amateur radio astronomers who are using RTL-SDR dongles for pulsar detection. 

A pulsar is a rotating neutron star that emits a beam of electromagnetic radiation. If this beam points towards the earth, it can then be observed with a large dish antenna and a radio, like the RTL-SDR. Pulsars create weakly detectable noise bursts across a wide frequency range. They create these noise bursts at precise intervals (milliseconds to seconds depending on the pulsar), so they can be detected from within the natural noise by performing some mathematical analysis on the data. Typically a few hours of data needs to be received to be able to analyze it, with more time needed for smaller dishes.


One problem is that pulsar signals can suffer from ‘dispersion’ due to many light years of travel through the interstellar medium. This simply means that higher frequencies of the noise burst tend to arrive before the lower frequencies. Mathematical de-dispersion techniques can be used to eliminate this problem enabling one to take advantage of wideband receivers like the RTL-SDR and other SDRs. The more bandwidth collected and de-dispersed, the smaller the dish required for detection.

Over on the Neutron Star Group several amateur pulsar detection projects are listed, and entries denoted with the “^” symbol make use of the RTL-SDR. Below we show a brief overview of those projects:

Andrea Dell’Immagine (IW5BHY) – Based in Italy Andrea often uses a 3D corner reflector antenna which is equivalent to a 2.5 meter diameter dish to observe pulsars in the 70cm band (~420 MHz). The antenna is in a fixed position so he can only detect pulsars that drift into the beam width of the antenna. With this antenna, a 0.3dB NF LNA, an RTL-SDR and de-dispersion techniques he’s been able to detect the Pulsar B0329+54 which is 2,643 light years away with an integration time of about 3 hours.

Andrea (IW5BHY)'s 3D Corner Reflector Pulsar Detection Antenna.
Andrea (IW5BHY)’s 3D Corner Reflector Pulsar Detection Antenna.

Andrea has also used a 4M dish to detect Pulsar B0329+54 also at 70cm with an RTL-SDR. With the larger dish he’s able to detect it within about 40 minutes of integration time.

Andrea (IW5BHY)'s 4M dish.
Andrea (IW5BHY)’s 4M dish.

Hannes Fasching (OE5JFL) – Based in Austria Hannes has a 7.3M dish that he uses for pulsar detection with his RTL-SDR. With this large dish he’s been able to receive 22 pulsars at both 70cm (424 MHz), and 23cm (1294 MHz) frequencies. With such a large dish, detecting a strong pulsar like B0329+54 only needs less than a minute of integration time.

Mario Natali (I0NAA) – Based in Italy Mario uses a 5M dish to observer pulsars at both 409 MHz and 1297 MHz. Combined with a low noise figure LNA and his RTL-SDR he’s been able to receive the B0329+54 pulsar with an integration time of about 2 – 2.5 hours.

Mario Natali (I0NAA)’s 5M Dish

Michiel Klaassen – From the Dwingeloo Radio Observatory in the Netherlands Michiel has used their large 25M dish and an RTL-SDR to detect B0329+54 at 419 MHz.

Peter East & Guillermo Gancio  Peter and Guillermo have used the large 30M dish at El Instituto Argentino de Radioastronomía (IAR) in Argentina and an RTL-SDR to detect the Vela pulsar (B0833-45) at 1420 MHz.

In terms of hardware required, from the above projects we see that you’ll need an RTL-SDR dongle (other more costly SDR’s could also be used), a dish as large as you can get (along with some sort of dish pointing system), a low noise figure amplifier (0.5dB or less is desired) to be placed right by the dish, a few line amps if the cable run is long and perhaps a filter if you are seeing interference from terrestrial signals.

An overview of software for detecting pulsars with the RTL-SDR can be found over on the Neutron Star Groups software page. Essentially what you need is an analysis program which can work on the raw IQ data that is collected by the RTL-SDR and dish antenna. This software ‘folds’ the data, looking for the regular noise bursts from the pulsars. The output is data that can be used to create a graph indicating the spin period of the pulsar, and thus confirming the detection.

Graph showing the half-period of B0329+54. 350 * 2 = 700 ms which is about what matches on the B0329+54 Wikipedia page.
Graph showing the half-period of B0329+54. 350 * 2 = 700 ms which is about what matches on the B0329+54 Wikipedia page.

Amateur Pulsar Observations with an RTL-SDR

Back in September 2015 we made a posted that discussed how some amateur radio astronomers have been using RTL-SDR’s for detecting pulsars. A pulsar is a rotating neutron star that emits a beam of electromagnetic radiation. If this beam points towards the earth, it can then be observed with a large dish antenna and a radio, like the RTL-SDR.

In their work they showed how they were able to detect and measure the rotational period of the Vela pulsar, one of the strongest and easiest to receive pulsars. They also noted how using several RTL-SDR dongles could reduce the required satellite dish size.

Recently we came across Hannes Fasching (OE5JFL)’s work where he shows that he has detected 15 pulsars so far using RTL-SDR dongles. His detection system specs include:

Antenna: 7.3m homemade offset dish, OE5JFL tracking system
Feeds: 70cm (424 MHz) dual-dipole with solid reflector, 23cm (1294 MHz) RA3AQ horn
Preamplifiers: 23cm cavity MGF4919, 70cm 2SK571 (30 years old!)
Line Amplifier: PGA103+
Interdigital filter: designed with VK3UM software, 70cm 4-pole, 23cm 3-pole
Receiver: RTL-SDR (error <1ppm), 2 MHz bandwidth
Software: IW5BHY, Presto, Tempo, Murmur

Furthermore, from looking at the Neutron Star Group website, it seems that the majority of amateur radio astronomers interested in pulsar detection are currently using RTL-SDR dongles as the receiver. Some of them have access to very large 25m dishes, but some like IW5BHY, IK5VLS and I0NAA use smaller 2.5m – 5m dishes which can fit into a backyard.

If you are interested in getting into amateur pulsar detection, check out the Neutron Star Group website as they have several resources available for learning.

OE5JFL's 7.3m pulsar detection dish with an RTL-SDR receiver.
OE5JFL’s 7.3m pulsar detection dish with an RTL-SDR receiver.