Category: Radio Astronomy

Crowd Supply Discovery Dish Teardown Session: Thursday 30 November Noon PST

Crowd Supply is hosting Teardown Session 38 on Thursday 3- November at Noon PST time which will feature the Discovery Dish. Join us for this livestream where I will be talking about and showing the Discovery Dish prototype.

Discovery Dish is currently being crowd funded over on Crowd Supply. It is designed to be an easy entry to the world of L-band weather satellites, hydrogen line radio astronomy, and Inmarsat reception. The Discovery Dish aims to be the start of an ecosystem of hardware designed to get users set up with satellite reception, including a planned companion light-duty antenna rotator.

Remember to click on the “Notify me” button on the YouTube link in order to be reminded about the stream!

Teardown Session 38: Discovery Dish

TotalPower: Windows Program for Hydrogen Line Detection and Analysis with an RTL-SDR

Thank you to Mario A. Natali (I0NAA) who wrote in an wanted to share his Windows software called TotalPower which is designed for mapping the galactic Hydrogen line and works with RTL-SDR dongles.

The Hydrogen Line is an observable increase in RF power at 1420.4058 MHz which is created by Hydrogen atoms. It is most easily detected by pointing a directional antenna towards the Milky Way as there are many hydrogen atoms in our own galaxy. This effect can be used to measure the shape and other properties of our own galaxy.

Mario writes:

[TotalPower] was originally designed to measure total power of received spectrum and that, thanks to the input of many users, is now able to perform many other tasks including the 3D mapping of selected sky areas and HLine detection with the ability to estimate the speed of rotation of galaxy arms ( respect to our position )

TotalPower is available from the downloads section on Mario's website. Mario has uploaded a manual which explains how the program works, which we have mirrored here.

TotalPower measuring the rotational speed of galactic arms
TotalPower measuring the rotational speed of galactic arms

Discovery Dish Now Available for Crowd Funding! A Lightweight Dish and Feed for L-Band Weather Satellites, Hydrogen Line and Inmarsat

Today our Crowd Funding campaign for the Discovery Dish has gone live! Thank you to anyone who supports this project and our goal of bringing affordable products that make getting into various radio projects easier.

Our launch announcement reads:

We decided to develop Discovery Dish because we were disappointed by the lack of ready-to-use, low-cost, lightweight dish antennas on the market that are suitable for software-defined radio projects like receiving L-Band geostationary and polar-orbiting weather satellites, as well as for 1.5 GHz Inmarsat reception and 1.42 GHz hydrogen line radio astronomy. With excellent open source weather satellite decoding software, like SatDump, now available, it’s time for a complementary, easy-to-use hardware solution.

Through testing over several years, we chose 65 cm as the diameter, as we found that 60 cm is close to the minimum diameter required for perfect GOES weather satellite reception at 24° elevation, so this size should be suitable for most of the world that has GOES reception available. For LRPT satellites like GK-2A, and HRPT polar-orbiting satellites, it is more than large enough. We combined the dish with a carefully tuned feed that has a built-in low-noise amplifier (LNA) and dual filtering, which means there is no loss from feed to LNA. This also means we can use thinner and less stiff coax cable, which is a lot easier to handle and route. Finally we ensured that the entire dish and feed system is waterproof.

The only other ready-to-use dish offering we found is based on a modified 2.4 GHz grid Wi-Fi dish, which is still in our opinion too big and heavy. Size and weight is especially the important if you want to be able to use a low-cost, light-duty antenna rotator, which typically can only handle less than 1 kg in weight. We found that the grid Wi-Fi dish offering also has no solution for waterproofing the LNA, so the LNA needs to be placed indoors and very thick and unwieldy coax is used to avoid feed to LNA losses.

Other ways to receive these weather satellites and carry out hydrogen line experiments typically involve modifying a 2.4 GHz Wi-Fi grid antenna, or an old satellite TV dish. But these modifications can be time-consuming and difficult to get right, and even 60 cm satellite TV dishes are too heavy for light-duty antenna rotators.

Finally, we developed Discovery Dish with an eye toward it being used with a low-cost antenna rotator, and we are in the process of prototyping our own rotator design. Our antenna rotator is not ready for crowdfunding yet, as there are still some things to work out and long-term stress testing to be done, but please keep an eye out for it in 2024! An antenna rotator is a great addition if you want to use a dish antenna to decode images from the polar-orbiting HRPT weather satellites.

Note that you don’t need an antenna rotator to receive geostationary satellites like GOES, or to do drift hydrogen line observations. For polar-orbiting HRPT satellites, the lightweight nature of Discovery Dish also makes tracking the satellites by hand a much easier prospect.

Learn more about Discovery Dish on our main campaign page. Thank you to everyone who supports the Discovery Dish project in any way!

Discovery Dish: Simplified system for weather satellite reception and hydrogen line radio astronomy


Wok-The-Hydrogen: A Low Cost Wok Based Hydrogen Line Radio Telescope

In addition to the last Hydrogen Line radio astronomy post from a few minutes ago, we've also recently seen a post on Hackaday about a research paper (PDF) that describes a Hydrogen Line Radio Telescope made from a cooking Wok, LNA and RTL-SDR dongle.

In the paper Leo W.H. Fung et al of Hong Kong University of Science and Technology uses a 61cm cooking Wok with a custom made dipole feed at the calculated focal point. A filtered LNA sits after the feed, and is connected to an RTL-SDR Blog V3 dongle enclosed within a metal cookie box for additional shielding.

The results show that the Hydrogen Line was indeed detected, and measurements of the galactic rotational velocity were possible.

Again we note that we will soon by crowdfunding for a product called the 'Discovery Dish' that will be fairly similar in size and shape. It is designed for receiving L-band weather satellites, but can also be used as a Hydrogen Line telescope too.

The Wok Hydrogen Line Telescope Setup

TechMinds: Using a Software Defined Radio as a Radio Telescope

Back in 2020 we released a tutorial about how to use a 2.4 GHz WiFi Grid Dish antenna as a radio telescope which can detect and measure the Hydrogen line emissions in our Milky Way galaxy.

Recently matt from the TechMinds channel has uploaded a video showing this same project but using the NooElec mesh antenna that has been slightly modified for improved performance on 1.7G and 1.4G.

In his video Matt sets up a drift sky scan, where the rotation of the earth drifts the Milky Way through the beamwidth of the dish. Matt uses Stellarium to virtually visualize the live sky map, SDR# and the IF average plugin to average the spectrum, and an Airspy software defined radio.

We note that we will soon be crowdfunding for our 'Discovery Dish', which we believe will be a superior solution for detecting and measuring the Hydrogen Line on a budget.

Using Software Defined Radio As A Radio Telescope

Discovery Dish Pre-Launch: A Lightweight Dish and Feed for L-Band Weather Satellites and Hydrogen Line Reception

For the past few years we have been working on finding the best way to help beginners get started with L-band weather satellite reception and basic radio astronomy. We have now come up with a solution that we're calling the 'Discovery Dish' - a lightweight 65 cm diameter dish and active filtered feed set.

Discovery Dish: Simplified system for weather satellite reception and hydrogen line radio astronomy

The Discovery Dish will be crowd funded, and we currently have a pre-launch page set up on Crowd Supply. So if you are interested, please visit the pre-launch page and click on the Subscribe button for updates.

Discovery Dish is a 65-cm diameter aluminum satellite dish and active filtered feed designed for receiving GOES HRIT, GK-2A LRIT, FengYun LRIT, NOAA HRPT, Metop HRPT, Meteor M2 HRPT and other weather satellites that operate around 1.69 GHz. The dish is designed to weigh under one kilogram, and it splits into three petals, making it easier to ship worldwide. The 1.69 GHz feed contains a built-in LNA right at the feed point, as well as filtering, which means that there is almost no noise figure loss from cables or connectors.

Note that the prototype images show an early non-petalized prototype with rough laser cut wind holes. The production version will obviously be a lot neater looking! 

In testing the 65 cm diameter Discovery Dish with it's highly optimized feed has proven effective at receiving the GOES HRIT satellite signal with SatDump. We typically achieve SNR values of 3-4 dB to GOES-18 at 24 deg elevation, and with SatDump an SNR of 1 dB is about the minimum required to receive images so there is plenty of margin. It can also easily receive LRIT from GK-2A and Fengyun, and also when combined with an antenna rotator (or manual hand rotating) can receive HRPT weather satellites too.

The feed on the Discovery Dish consists of a tuned dipole feed with two 5V bias tee powered low noise figure LNAs, and two SAW filters (centered at 1680 MHz with 69 MHz Bandwidth). The feeds are also easily swapped out, and we will also be selling a 1.42 GHz Hydrogen Line feed for those who want to use the dish to get started with radio astronomy. Because the LNA's are right by the feed there is are no losses from feed to LNA, so we can use thinner and easier to handle cabling like RG58 without any loss issues.

In the past we've recommended and relied on 60 x 100 cm WiFi dish antennas for L-Band geosynchronous satellites and Hydrogen Line reception, but at 1.6kg these are too heavy, wide and exert too much torque for light duty antenna rotators to handle. At about half the weight of an equivalent WiFi Dish, the Discovery Dish is much easier to handle.

In the future we hope to be able to provide a low cost light duty antenna rotator that compliments the Discovery Dish. Currently we have tested the Discovery Dish with the AntRunner antenna rotator and found it to be light enough for that rotator to handle, versus a WiFi dish which is far too heavy for it.

Also when compared to a WiFi dish, the Discovery Dish is much easier to optimally set the offset skew as you can simply rotate the feed, versus having to rotate the entire dish at 45 degree increments.

We will also be offering an outdoor electronics enclosure that can be used to house a Raspberry Pi, RTL-SDR and other components like POE splitters. In our tests we have been running an RTL-SDR Blog V4, Orange Pi 5 and POE splitter in the enclosure, and running the SatDump GUI directly on the Orange Pi 5. This results in a neat contained system where only one Ethernet cable needs to be run out to the enclosure. 

As we are in pre-launch, pricing is not yet confirmed, but we expect the Discovery Dish to sell for less than US$200 with reasonable worldwide shipping costs. It will be a similar cost to what you would pay if you purchased a WiFi dish, filtered LNA and cabling yourself. Obviously please check what satellites can be seen in your region.


Meteor M2 HRPT
Meteor M2 HRPT
FengYun LRIT
FengYun LRIT

Recent Talks from the Society of Amateur Radio Astronomers 2023 Conference

Over on their YouTube channel there have been numerous talks uploaded over the past few months from the 2023 Society of Amateur Radio Astronomers (SARA) conference. Some of these talks are quite useful for beginner radio astronomers who are getting started with small dishes and software defined radios like the RTL-SDR.

One talk by Alex Pettit describes how to build a radio telescope from a an umbrella and some "Faraday fabric" which is copper cloth. The results show more than adequate performance for the cost, making this an affordable and easy entry to radio astronomy.

Alex Pettit - Umbrella Antennas

Another video presented by Dr. Wolfgang describes building small to medium sized radio telescopes. He explains how small radio telescopes less than 3 meters in size can work well for receiving the 21cm Hydrogen line, and how SDRs are the best choice of receiver for them. Many examples of small dish installations are shown.

Dr. Wolfgang Herrmann: Building Small/Medium Size Radio Telescopes

TechMinds: Detecting Meteors With Software Defined Radio

In his latest video Matt from the TechMinds YouTube channel has shown how it's possible to detect the RF echoes of meteors falling in the earths atmosphere which a software defined radio.

The concept is relatively straightforward. Meteors falling in the atmosphere generate an RF reflective ionized trail, which is highly reflective to RF. In the UK where Matt lives, the Sherwood Observatory of the Mansfield and Sutton Astronomical Society (MSAS) have set up a meteor detection beacon "GB3MBA" which transmits an 80W CW signal at 50.408 MHz.

When tuned to this frequency with an SDRplay RSPdx SDR, Matt shows how the shifted reflections of meteors can be seen as blips around the beacon's carrier frequency. What is also seen are reflections from aircraft which show up as longer doppler shifted lines. Matt notes that if you live within 200km of the beacon a simple dipole antenna is sufficient, however any further might require an antenna system with more gain like a Moxon or Yagi.

We note that in Europe a similar beacon called the GRAVES space radar in France which operates at 143.050 MHz can be used.

Detecting Meteors With Software Defined Radio