Tagged: sdrplay

A Comprehensive Lab Comparison between Multiple Software Defined Radios

Librespace, who are the people behind the open hardware/source SatNOGS satellite ground station project have recently released a comprehensive paper (pdf) that compares multiple software defined radios available on the market in a realistic laboratory based signal environment. The testing was performed by Alexandru Csete (@csete) who is the programmer behind GQRX and Gpredict and Sheila Christiansen (@astro_sheila) who is a Space Systems Engineer at Alexandru's company AC Satcom. Their goal was to evaluate multiple SDRs for use in SatNOGS ground stations and other satellite receiving applications. 

The SDRs tested include the RTL-SDR Blog V3, Airspy Mini, SDRplay RSPduo, LimeSDR Mini, BladeRF 2.0 Micro, Ettus USRP B210 and the PlutoSDR. In their tests they measure the noise figure, dynamic range, RX/TX spectral purity, TX power output and transmitter modulation error ratio of each SDR in various satellite bands from VHF to C-band.

The paper is an excellent read, however the results are summarized below. In terms of noise figure, the SDRplay RSPduo with it's built in LNA performed the best, with all other SDRs apart from the LimeSDR being similar. The LimeSDR had the worst noise figure by a large margin.

In terms of dynamic range, the graphs below show the maximum input power of a blocking signal that the receivers can tolerate vs. different noise figures at 437 MHz. They write that this gives a good indication of which devices have the highest dynamic range at any given noise figure. The results show that when the blocking signal is at the smallest 5 kHz spacing the RSPduo has poorest dynamic range by a significant margin, but improves significantly at the 100 kHz and 1 MHz spacings. The other SDRs all varied in performance between the different blocking signal separation spacings.

Overall the PlutoSDR seems to perform quite well, with the LimeSDR performing rather poorly in most tests among other problems like the NF being sensitive to touching the enclosure, and the matching network suspected as being broken on both their test units. The owner of Airspy noted that performance may look poor in these tests as the testers used non-optimized Linux drivers, instead of the optimized Windows drivers and software, so there is no oversampling, HDR or IF Filtering enabled. The RSPduo performs very well in most tests, but very poorly in the 5 kHz spacing test.

The rest of the paper covers the TX parameters, and we highly recommend going through and comparing the individual result graphs from each SDR test if you want more information and results from tests at different frequencies. The code and recorded data can also be found on the projects Gitlab page at https://gitlab.com/librespacefoundation/sdrmakerspace/sdreval.

SDRplay Coronavirus Supply and Distribution Impact Update

SDRplay have recently released an update on how the Coronavirus is impacting their supply lines. In short, they note that their fulfillment is currently normal, but there may be delays in the logistics distribution network. In terms of stock levels, they have enough to cover a few more weeks of normal buying, but beyond that the supply chain is not certain and there may be restocking delays.

Dear customer,

We have been fortunate that our suppliers have been able to source the components needed to fulfil our current backlog commitments. In particular the demand for the new RSPdx exceeded our expectations, and that has caused shortages up until now.

However we now have enough product available to continue supply of all three SDRplay production RSPs for a few more weeks at traditional buying levels. Beyond that, we will be dependent on our subcontract manufacturing partners’ ability to source components. As the coronavirus situation unfolds it is likely that restocking will take significantly longer than usual and we are working with both suppliers and our distributors to do our best to plan for the uncertain future.

Meanwhile, regarding orders placed in the next week or so, SDRplay and its fulfilment centres are currently working as normal, BUT please be aware that logistical delays in the distribution network are likely – so please be patient if your shipment takes longer than expected.

We’d also like to take the opportunity to send our best wishes to all our customers and their friends and families as this emergency situation develops.

Jon, on behalf of the SDRplay team.

Techminds Reviews a HF RX SWL Antenna for Small Spaces and Apartments

Over on his YouTube channel TechMinds has uploaded a video reviewing the X1-HF 1 - 50 MHz Trapped Coil Receiving antenna from Moonraker.eu which goes for £69.95. This is a small electrically short antenna for HF reception which is easy to setup and install, requiring no radials. However, like all short HF antennas it is a compromise.

In the review he uses an SDRplay RSP2 SDR to test HF reception with the antenna. Later in the video he also tests it outside the advertised 1 - 50 MHz range. He concludes that the antenna works very well for it's small size.

HF RX SWL Antenna For Small Spaces And Apartments RTL SDR

Decoding NavTex with an SDRplay RSPDx, SDRUno and YanD

Over on YouTube TechMinds has uploaded a new video explaining NavTex and showing how to decode it with an HF capable SDR like the SDRplay RSPDx. NavTex is a marine digital data radio service designed for transmitting information like navigational and meteorological warnings, weather forecasts and maritime safety information. It is broadcast in either the MW frequency band at 490 kHz and 518 kHz or in the HF band at 4209.5 kHz.

In the video TechMinds uses a guide put out by Mike Ladd from SDRplay (pdf warning). The guide explains how to connect SDRuno to a NavTex decoder called YanD via a virtual audio cable. The rest of the video shows a NavTex message being decoded, some sample messages, and a closer look at YanD. 

Even if you don't use an SDRplay, the guide could be adapted for other SDRs too.

Decoding NavTex with Software Defined Radio - SDRuno RSPdx

SDRplay Updates: RSPdx Now Supported by SDR Console V3, RSPdx EXTIO Released

SDRplay have recently released an update regarding third party software support and availability of their latest RSPdx receiver. They write:

Happy new Year from all of us at SDRplay.

Here’s an update on additional software for the RSPdx. SDRplay’s SDRuno fully supports the RSPdx but it takes several weeks for other software to catch up to the capabilities offered on the other RSP models.

Simon Brown has released his latest version of SDR Console V3 which supports the RSPdx (Version 3.0.18 dated January 1st) over on https://www.sdr-radio.com/ (make sure you download the latest API 3.x from our downloads page first)

We have released an EXTIO plugin for the RSPdx which will enable the RSPdx to work with any EXTIO-based software (e.g. HDSDR) although it doesn’t support HDR mode. HDR mode will not be added and the source code for the plugin can be found on our GitHub repository (https://github.com/SDRplay/ExtIO_SDRplay) we will not be supporting the plugin source code or extending the plugins capabilities. They are all free to be modified.

It is important to note that the RSPdx ExtIO plugin does NOT, AND WILL NOT, support HDR mode. If you need HDR mode, then SDRuno is the best option. HDR mode requires the end application to work in a certain way and this is not something that can be controlled via the ExtIO protocol.

Work has also begun on supporting RSPdx for SoapySDR based applications such as Cubic SDR (again this won’t include HDR mode). A Gnu Radio source block for the RSPdx will follow.

We are working with Steve Andrew, author of the Software Analyser software programme (see https://www.sdrplay.com/spectrum-analyser/ ) to help get compatibility for the RSPdx – this is a slightly longer process so this will take several more weeks.

Regarding stocks of the RSPs, SDRplay and most of our resellers on www.sdrplay.com/distributors/ have plenty of stock of RSP1A and the RSPduo. However there continues to be a shortage of the RSPdx whereby many of the resellers have sold out of their first deliveries. SDRplay is queuing up their replacement orders on a first come, first served basis. We also have our own quantity planned in there to allow us to sell direct from our website. We still hope that by the end of January we will have supplied this second wave of RSPdx demand.

The RSPdx
The RSPdx

Mike from SDRplay Compares the RSPdx Against Other SDRs on MW/LW

Over on the SWLing post blog we've seen a post contributed by Mike Ladd who works with SDRplay. Mike has been comparing the new SDRplay RSPdx on medium wave and long wave reception against the Elad FDM-S2, Airspy HF+ Discovery and the Perseus. The RSPdx is SDRplay's latest product which sits at the top of their line as their highest performance single tuner receiver.

Each test consists of a video where he runs a comparison between the RSPdx and another receiver. All SDRs are run in SDRuno, the official application for SDRplay receivers. It is left for the listener to determine which SDR sounds better. From a listeners perspective, it appears that the RSPdx performs at least identically to the other SDRs.

Comparing the RSPdx Against other SDRs
Comparing the RSPdx Against other SDRs

Testing the SDRplay RSPdx in HDR Mode on NDB and Broadcast AM DX

One of the selling points of the recently released SDRplay RSPdx is it's special High Dynamic Range (HDR) mode which can be used to improve signal performance for frequencies below 2 MHz. This mode should be especially useful in RF environments where there are strong signals that can overload the SDR and desensitize reception on weaker stations.

Over on YouTube Ivan (aka icholakov) has uploaded a video showing comparisons of signals being received with HDR mode turned on and off. He tests it on weak NDB DX signals, and on medium wave broadcast AM. The results do appear to show that using HDR mode results in an improvement in signal strength.

SDRPlay RSPdx HDR mode on and off - testing Non Directional Beacons and Medium Wave

Decoding Differential GPS (DGPS) with an RSPdx and MultiPSK

Over on YouTube the TechMinds channel has uploaded a new video about decoding Differential GPS (DGPS) using an SDRplay RSPdx SDR. DGPS is a terrestrially transmitted long wave signal that is used to help correct and improve GPS position data calculations which may have timing errors due to atmospheric propagation delays. It works by broadcasting correction data calculated by the difference in received GPS location and the known location of the DGPS transmission site. DGPS is typically transmitted on longwave between 285 kHz and 315 kHz, but in Argentina there are two stations at 2570 and 2950 kHz.

In the video TechMinds explains how DGPS works, and some location around the world from where it is transmitted from. Later in the video he shows a DGPS signal being received by a SDRplay RSPdx SDR, and then show a demo of how it can be decoded with MultiPSK.

We note that there also various other DGPS decoders available including decoders for Android and iOS. A list of decoders can be found on the DGPS sigidwiki page.

DGPS Differential GPS Decoding With RSPdx And MultiPSK