Tagged: sdr#

SignalsEverywhere PlutoSDR Videos: Applying the Frequency Extension and Dual Core CPU Hacks and Running on SDR#

Over on the SignalsEverywhere YouTube channel, Corrosive has uploaded two new videos about the PlutoSDR. The PlutoSDR is a low cost (typically $99 - $149) RX/TX capable SDR with up to 56 MHz of bandwidth and 70 MHz to 6 GHz frequency range. It also has an onboard FPGA and ARM Cortex-A9 CPU.

By default the bandwidth and frequency range of the PlutoSDR is limited to only 20 MHz and 325 MHz - 3.8 GHz. A minor hack which requires some commands to be input via a terminal screen is required to unlock its full potential, and in the first video Corrosive runs through how this hack can be applied. He also shows an additional hack which unlocks a second CPU core which can be useful for increasing the available CPU power for apps running on the PlutoSDR's ARM processor.

In the second video Corrosive shows how to install the PlutoSDR SDR# plugin, which allows the PlutoSDR to run in SDR#. He then shows how to actually use the plugin to connect to the PlutoSDR.

Adalm Pluto SDR Tutorial: 70Mhz to 6Ghz and Dual Core CPU Modification

Adalm Pluto SDR Sharp Plugin Tutorial ~ [Infamous SDR# on Your Pluto]

Running SDR# in a Windows Virtual Machine on Linux

Thanks to John Jackson of JRMagnetics for writing in and letting us know about his post on installing SDR# onto a Windows Virtual Machine (VM) running on Fedora Linux.

As John notes, running SDR software from within a virtual machine essentially freezes a working version of your setup in a virtual image. It's then possible to put the image on a memory stick and take your entire working software setup with you and run it on another PC. Using a fixed image then also avoids problems with OS updates breaking things, as updates can be safely turned off on the virtual machine. Any damage from viruses is localized to the virtual machine only.

During his research John found many people who have been running Linux from within a virtual machine running on Windows, but not the reverse. Originally he tried running a Windows VM from within Windows, but he experienced crashes. Only when using Linux as the base OS was his Windows VM stable.

In his setup he runs Fedora 26 as the base Linux OS (although other Linux versions should also work), and Windows 7 in the Virtual Machine. He uses Oracle VirtualBox as the virtualization software. Once Windows 7 is installed on the Virtual Machine, setting up software like SDR# is as simple as going through our quickstart guide.

SDR# Running in a Windows Virtual Machine
SDR# Running in a Windows Virtual Machine

New SDR# Plugin Adds Support for Contour Shuttle USB Controllers

Contour ShuttlePro V2
Contour ShuttlePro V2

The Contour Shuttle Express and Pro V2 are USB controller accessories for PCs. They consist of a knob-like wheel with multiple buttons and they are designed as a keyboard replacement for improving the productivity of video/photo editors. However, several people have found them useful for controlling software defined radio receiver programs like SDR#.

Recently SDR# plugin developer Eddie Mac has released a new SDR# plugin that provides native support for the Shuttle devices from within SDR# itself. The plugin allows you to dynamically map the Shuttle's buttons and wheels to functions within SDR#.

Eddie also writes:

There was no wrapper available for Contours Windows SDK so I created a managed .NET wrapper around contours dll. If anyone wants to develop their own software for these devices I will happily provide them with my .NET wrapper for free as well as a demo app to instruct on its usage.

Contour Shuttle Plugin for SDR#
Contour Shuttle Plugin for SDR#

Using an Airspy HF+ with SDR# and WSJT-X to Decode FT8 + SpyServer FT8 Decoding Demo

Over on YouTube user TheGazLab has uploaded a video that reviews the Airspy HF+, and also shows how to use the HF+ with SDR# and WSJT-X in order to create a FT8 monitor. The Airspy HF+ is high dynamic range HF/VHF receiver designed for DXing.

In the video TheGazLab demonstrates to us the decoding in real time, and explains the CAT control SDR# plugin that he's using. The CAT control plugin when combined with a virtual serial port driver allows the WSJT-X program to automatically tune SDR# to the FT8 frequency selected in WSJT-X.

Later in the video he also discusses the SpyServer network which allows SDR# users to connect to remote public Airspy and RTL-SDR units over the internet. He demonstrates connecting to a public server in the UK, and decoding FT8 via the remote server. The video also shows the new SpyServer interface by  which nicely lays out the world SpyServer network on a map, making it easy to choose a desired location to listen to.

Airspy HFPlus, SDR# and WSJT-X with full CAT control decoding FT-8

SDR# TETRA Plugin Now Available At RTL-SDR.RU

Vasilli has recently released the SDR# TETRA plugin on his website RTL-SDR.RU (note that the site is in Russian, but can be translated with the Google Translate option in the top right of the page). Previously it was only available via ever changing forum links, so it's good to see that it has a permanent home now for the latest version. This plugin allows you to listen to TETRA digital voice via SDR#, without needing to set up any complicated GNU Radio based receivers which were necessary in the past.

The features include (note Translated from Russian):

  • Receiving a signal from the BS band 25kHz and modulation Pi / 4-DQPSK;
  • Automatic adjustment of the reception frequency;
  • Displays information about the BS;
  • Displays ISSI, GSSI subscribers in the channels (for open channels only);
  • Displays a service exchange network (for open channels only);
  • It allows you to listen to the channels in manual or automatic mode selection (only open channels);
  • It allows to filter and distribute the listening priority specified for groups (GSSI);
  • It displays a message with the location (just a short message format)

The current features not yet implemented are:

  • And listen to correctly display any encoded information in a network;
  • Display SDS type 4 (short messages);
  • Record audio from the channels (menu added, but does not work);

We also note that as discussed in a previous post there is a companion program for this plugin called TETRA Trunk Tracker.

SDR# TETRA Decoder Plugin
SDR# TETRA Decoder Plugin

SDR# Physical Remote Now For Sale + YouTube Review

Back in August Maxim who runs his small company "ExpElectroLab" wrote in and shared with us news of his upcoming product called "SDR-Remote" which is a physical tuning knob and control panel for SDR#.

Recently the product was released for sale on his shop, and costs $57.50 USD + shipping. The vk.com store is for Russian customers only, but you contact him at [email protected] if you are non-Russian and are interested in his products. The features of the SDR-Remote are pasted below:

The heart is ARDUINO NANO V3.0, buttons, encoder and software.

Implemented by:

  • tuning the frequency of reception with frequency of 1 kHz, 100 kHz, 1 MHz (additionally 50 Hz)
  • volume control
  • mute
  • FM mono / stereo switching
  • switching modulation types
  • on / off noise control
  • Noise level threshold adjustment
  • adjustment of width of a strip
  • switching bands 160m, 80m, 40m, 25m, 13m.10m, FM, AVIA, 2m, 70cm

Maxim hand builds these in his home country of Russia, and has noted that since the case is 3D printed he can only create a few per week at the moment. The knob interfaces with SDR# via an Arduino driver and SDR# plugin which can be downloaded.

SDR-Remote V2.1
SDR-Remote V2.1

Over on YouTube a Russian reviewer has uploaded a video showing SDR-Remote v2.1 in action. The video is narrated in Russian, but YouTube auto-captions combined with auto-translate does a decent job.

Пульт для SDR-приёмника и SDRSharp.

An Introduction to SDR and SDR Applications for Shortwave Listeners

Over on the SWLing Post blog, author Thomas Witherspoon K4SWL has uploaded a new article titled "Software Defined Radio Primer Part 1: Introduction to SDRs and SDR applications". The article originally appeared in the June 2018 issue of The Spectrum Monitor magazine, which can be purchased online for $3 per issue.

The idea behind the article is to introduce people to SDR from a shortwave listening point of view, so high performance HF SDRs like the Airspy HF+, Elad FDM-S2 and WinRadio Excalibur are discussed. Thomas notes that these SDRs can perform as well as traditional DX-grade receivers that can cost two to three times more. He also explains what advantages SDR's bring to the shortwave radio listening hobby. This may be a good article to show those still using older hardware radios that haven't yet converted to the SDR world. 

The article is currently part one of a three part series, with parts two and three to be released in October and November.

DXing with SDR in a Car
DXing with SDR in a Car (Photo: Guy Atkins)

Artificial Intelligence Radio – Transceiver Now Released for Crowdfunding

Last week we posted about the Artificial Intelligence Radio - Transceiver (AIR-T), which was awaiting release for crowdfunding. Today the Crowd Supply campaign for it has gone live

As expected, the AIR-T is not a cheap with it coming in at US$5,699, and this is with a 10% discount off the MSRP. However, the AIR-T is likely to be more of interest to high end industry and university researchers who have research money to spend. Also, compared to Ettus E310/N310 and LimeNET Mini SDRs which have built in non-GPU based computing platforms and similar SDR performance, the AIR-T could be seen as reasonably priced assuming that the software and drivers for it are decent. In the future we expect to see the price of similar SDR-AI development boards eventually reduce down to hobbyist level prices. 

The basic idea behind the AIR-T is to combine a 2x2 MIMO SDR transceiver with a NVIDIA Jetson TX2 GPU that can be used to run artificial intelligence (AI) software fast. They will include software that will allow GNU Radio and Python code to be easily ported to the GPU architecture. 

Why build tomorrow’s tech with yesterday’s signal processing tools? The Artificial Intelligence Radio - Transceiver (AIR-T) is a fully integrated, single-board, artificial intelligence equipped, software defined radio platform with continuous frequency coverage from 300 MHz to 6 GHz. Designed for new engineers with little wireless experience to advanced engineers and researchers who develop low-cost AI, deep learning, and high-performance wireless systems, AIR-T combines the AD9371 RFIC transceiver providing up to 2 x 2 MIMO of 100 MHz of receiving bandwidth, 100 MHz of transmitting bandwidth in an open and reprogrammable Xilinx 7 FPGA, with fast USB 3.0 connectivity.

The AIR-T has custom and open Ubuntu software and custom FPGA blocks interfacing with GNU Radio, allowing you to immediately begin developing without having to make changes to existing code. With 256 NVIDIA cores, you can develop and deploy your AI application on hardware without having to code CUDA or VHDL. Freed from the limited compute power of a single CPU, with AIR-T, you can get right to work pushing your telecom, defense, or wireless systems to the limit of what’s possible.

The Artificial Intelligence Receiver - Transceiver (AIR-T) SDR
The Artificial Intelligence Receiver - Transceiver (AIR-T) SDR