Tagged: l-band

Building a 3D Printed LHCP Helical L-Band Feed for Inmarsat, AERO and HRPT

Thanks to Manuel a.k.a. Tysonpower for submitting his latest YouTube video tutorial about building an 1550 MHz L-band LHCP helical antenna for receiving satellite signals such as Inmarsat, AERO and HRPT.

Manuel's design is based on a 3D printed part which is used to accurately form the helical winding. The winding then mounts onto an aluminum plate and a satellite dish arm using a custom 3D printed adapter for the dish arm. In the video he uses the helical feed with an 80cm satellite dish and a standard 40mm LNB mount on the dish arm. Attached to the feed are two LNAs in series which help to lower the noise figure and reduce losses in the coax cable.

With this setup he writes that he was able to get very good AERO and Outernet reception from Alphasat (25E geostationary). He also writes that he's had good results using it for HRPT reception as well.

The 3D printing STL files and list of parts required are available on Thingiverse, and the companion video is shown below. Note that the video is narrated in German, but English subtitles are available.

Manuel's L-Band Helical Feed
Manuel's L-Band Helical Feed

Outernet Dreamcatcher Sale is a Steal: $39 USD RTL-SDR + Computing Board All-In-One

The Outernet Dreamcatcher has recently gone on sale and is now only $39 USD. Previously it was priced at $79 and $59 USD. The Dreamcatcher is an RTL-SDR and computing board all built onto the same PCB. It has two SMA inputs - one is an L-band filtered and amplified input and the other is a standard wideband port good for all frequencies covered by a standard R820T2 RTL-SDR. For $39 it appears that you get the board itself, and a WiFi dongle, but no antennas, cables or SD cards are supplied with the unit.

In you are interested in the Dreamcatcher then back in June we posted a comprehensive review of it as well as their ceramic L-band patch antenna. Since then we've found that the Dreamcatcher has become much more stable and is very useful for applications like setting up a dedicated ADS-B receiver/feeder. At this price the Dreamcatcher is even better value than using a Raspberry Pi 3 plus external RTL-SDR dongle which can end up costing over $60 USD.

According to Outernet stocks appear to be fairly limited so this price probably won't last for too long.

Note: We'd advise not purchasing this for use with the Outernet data signal as we're unsure if that signal is going to last for much longer. Purchase it as a general purpose radio/computer instead.

The Outernet Dreamcatcher Board
The Outernet Dreamcatcher Board

Testing the Prototype Outernet Patch Antenna with Built in RTL-SDR

A few months ago satellite data broadcasting company Outernet created a limited number of prototype receivers that combined an L-band satellite patch antenna, LNA and RTL-SDR into a signal unit. This was never produced in bulk as they found it to be too noisy having the RTL-SDR so close to the antenna, but nevertheless it still worked fairly well.

Over on YouTube max30max31 bought one of these prototype units and made a video about using it for receiving and decoding various L-band satellite signals. In the video he first shows an overview of the product and then shows it receiving and/or decoding some signals like Inmarsat STD-C, AERO and Inmarsat MFSK.

Outernet SDRx Clearance Sale $15: RTL-SDR with built in L-band LNA and Filter

Recently the Outernet project transitioned from using RTL-SDR dongles and C.H.I.P single board computers to using their Dreamcatcher board, which is an RTL-SDR and computing board all in one. In between the transition they also produced a number of ‘SDRx’ dongles. These were custom RTL-SDR dongles with a built in L-band LNA and filter. As they no longer need the SDRx they have them on clearance at their store.

The clearance price is $15 USD which is an excellent deal. Remember though, that the SDRx is limited in frequency range – it is designed for receiving L-band satellites between 1525 – 1559 MHz and the filter will cut off all other frequencies.

The Outernet SDRx on Clearance
The Outernet SDRx on Clearance

Just add a simple L-band tuned antenna to the port and you should be able to receive Inmarsat and a signal like STD-C, AERO or the Outernet signal. A suitable antenna might be a homebrew patch, helix, cooking pot antenna or even a small tuned V-dipole antenna can work for the stronger AERO signals.

We also see that the price of their L-band Outernet active ceramic patch antenna has been dropped down slightly to $25 USD. This antenna is bias tee powered and can be used with a V3 dongle or their Dreamcatcher hardware. The Dreamcatcher itself is also now reduced in price to $59 USD.

We have a review of the Dreamcatcher and active ceramic patch antenna available here.

Outernet Dreamcatcher and L-Band Active Ceramic Patch
Outernet Dreamcatcher and L-Band Active Ceramic Patch

We also now list Outernet products in our store. These are commission sales so we receive a little bit per purchase which supports the blog, and the items are shipped by Outernet within the USA.

If you were unaware, Outernet is a free L-band based satellite service that provides content such as news, weather data, APRS repeats and more. Currently you can get about 20MB of data a day. Outernet receivers are also all based around the RTL-SDR, allowing for very cheap receivers to be built

L-Band and 6GHz Tests with the ADALM-PLUTO SDR

Over on YouTube Adam 9A4QV has uploaded two videos that show his tests with the ADALM-PLUTO SDR on the L-band and up at 6 GHz. In his first video the L-band test shows that the receiver is quite sensitive in this region, managing to receive L-band satellites without any LNA. Although he also tests reception with an LNA4ALL in the receive chain, and this still does improve reception even more.

In the second video Adam confirms that reception is available up to 6 GHz using a PlutoSDR with frequency extension hack enabled.

Potentially Receiving up to 10 GHz with an RTL-SDR and Multiple SUP-24000 Downconverters

Back in 2016 KD0CQ discovered that a $5 DirectTV device with model name SUP-2400 could be used as a downconverter with an RTL-SDR for receiving frequencies of up to 4.5 GHz. A downconverter is a device that converts high frequencies such as 4.5 GHz down into a frequency actually receivable by the RTL-SDR. The SUP-2400 is able to be modified into a useful downconverter by opening it up and manually removing some mixing harmonic filters.

In his latest post KD0CQ shows how you could combine four modified SUP-2400 downconverters to create a quarduple conversion mixer which allows you to receive up to 10 GHz. The post goes into the mixing math and practicalities of this idea. KD0CQ writes that some amplification will most likely be required to push the signal through, and in the past he’s managed to receive up to 7.5 GHz.

The SUP-2400 Directv upconverter that can be converted into a downconverter.
The SUP-2400 DirecTV device that can be converted into a downconverter.

Demodulating the Outernet signal with leandvb and an RTL-SDR

Leandvb is command line based lightweight DVB-S decoder designed for receiving Digital Amateur TV, including signals like HamTV from the International Space Station. The RTL-SDR can be used together with leandvb and it turns out that leandvb can also be used to decode the Outernet signal. If you were unaware, Outernet is a free L-band based satellite service that provides content such as news, weather data, APRS repeats and more. Currently you can get about 20MB of data a day. Outernet receivers are also all based around the RTL-SDR, allowing for very cheap receivers to be built. At the moment you’ll need a C.H.I.P or their specialized Dreamcatcher hardware to run their special Skylark OS with software decoder, but a general Armbian decoder is in the works.

Alternatively leandvb can be used, and over on their website the folks behind the leandvb software have uploaded a tutorial showing how to use leandvb to decode Outernet. Thanks to some reverse engineering attempts by Daniel Estévez, it was discovered that the Outernet modulation is very similar to DVB-S so the standard decoder can be used with some custom flags. Leandvb only outputs raw frames, not decoded data. They haven’t tested it, but it may be possible to feed the frames into Daniel Estevez’s free-outernet project for obtaining the final files.

During the testing they also discovered some interesting notes about the E4000 and R820T RTL-SDRs. For example by patching the R820T2 drivers to add some additional VGA gain they were able to make the R820T2 chips more sensitive at the Outernet frequency compared to the E4000 chip by bringing the signal further out of the quantization noise. They also tested a 60cm dish vs a patch antenna and found that the dish works significantly better.

Patch vs Dish Antenna for Outernet
Patch vs Dish Antenna for Outernet

Outernet: Patch antenna now sold seperately + other products

Back in June we tested Outernet’s new Dreamcatcher which is an ARM based computing board with RTL-SDR and L-band LNA built in. The $99 USD kit also included an external active L-band patch antenna. The Dreamcatcher full kit has now been reduced to $89 USD, and the active L-band patch antenna can also now be purchased by itself for $29 USD. The active patch antenna is also compatible with the bias tee on our V3 dongles and is a good low cost option for exploring most L-band satellite signals like Outernet, Inmarsat STD-C and AERO around 1542 MHz. The filter does unfortunately cut off the higher Iridium frequencies though.

They are also selling off their older L-band SDRx RTL-SDR boards at a reduced price of $20 USD. The SDRx is a RTL-SDR PCB with a built in L-band LNA and filter, but unlike the Dreamcatcher does not have built in computing hardware. They also have a limited $25 USD edition version of their active patch antenna which includes a built in RTL-SDR. This version is a bit more noisy compared to the standard active patch, but may be an interesting experimental antenna for some.

Current Outernet Products
Current Outernet Products