In the latest episode of his YouTube series on Aviation monitoring Rob explores how to decode L-band satellite ACARS (Aircraft Communication Addressing and Reporting System) and CPDLC (Controller Pilot Data Link Communications) messages using JAERO, an SDR like an RTL-SDR, and a appropriate L-band antenna such as our RTL-SDR Blog Active L-Band Patch (currently out of stock).
In the video Rob shows examples of what you might receive such as CPDLC ATC instructions, digital ATIS information, arrival information and suggested landing data configuration instructions. He goes on to show satellite coverage maps, what hardware is required to receive these signals, and finally how to setup the receiving and decoding software.
How To Decode L band Satellite ACARS and CPDLC messages with JAERO and your SDR
In his latest video Rob from Frugal Radio has reviewed the NooElec Inmarsat Patch Antenna Bundle. The US$79.95 bundle includes a PCB patch antenna, Inmarsat SAWBird LNA, SMA DC Block, SMA Barrel adapter and SMA pigtail. In the video Rob tests the bundle out on various AERO signals using the JAERO software, before moving on to compare the bundle with our own RTL-SDR Blog Active L-Band Patch antenna. The comparison results show that our $49.95 L-band antenna is better by about 5-6dB in SNR.
Our RTL-SDR Blog Active L-Band Patch antenna set is available on our store. However, please note that this antenna is currently in short supply due to the global electronics supply chain shortage. We expect to be sold out within a few days but we are aiming to be able to restock within 1-2 months from now.
Review : NooElec L Band Inmarsat Patch Antenna Bundle
Over on YouTube Rob from Frugal Radio has uploaded a video reviewing our new L-Band Patch antenna which we released for sale late last month. The patch is currently on a release sale for US$44.95 including free standard airmail shipping to most countries. We will be ending the sale this Wednesday at which point the price will go to US$49.95, still with free standard airmail shipping to most countries. The patch can be purchased from our web store at www.rtl-sdr.com/store.
In the video Rob demonstrates the patch receiving Inmarsat signals strongly, and decodes a few AERO signals using JAERO. He shows that the patch works on any RTL-SDR with bias tee capability as well as an Airspy Mini. Lastly he compares the unit against the SDR-Kits patch.
We note that we are also supplying a kit for a giveaway to Frugal Radio subscribers that we will announce in an upcoming video coming out a few days time.
RTL-SDR updated L-band patch antenna review - perfect for your SDR radio!
UPDATE: Giveaway information now available in the latest video below.
SDR-Kits.net have begun selling low cost GPS antennas that are modified to receive the Inmarsat satellite frequencies between 1535 MHz to 1550 MHz. They also have a version for Iridium satellites that receives 1610 MHz to 1630 MHz. The antennas are powered by a 3-5V bias tee, so they should work fine with SDRplay, Airspy and RTL-SDR Blog V3 units.
AERO messages are a form of satellite ACARS, and typically contain short messages from aircraft. It is also possible to receive AERO audio calls. STD-C aka FleetNET and SafetyNET is a marine service that broadcasts messages that typically contain text information such as search and rescue (SAR) and coast guard messages as well as news, weather and incident reports. Some private messages are also seen. To decode AERO Mike uses JAERO, and for STD-C he uses the Tekmanoid STD-C decoder.
Mike has also created a very handy bank of frequencies for the SDRUno frequency manager which can be downloaded from here.
We note that if you're interested in waiting, at the end of September we will have an L-band patch antenna set available too. Our antenna will work from 1525 up to 1637 MHz. Prototypes have shown have shown good Inmarsat, Iridium and GPS reception. More details coming next month when manufacturing gets closer to finishing up.
At the beginning of last month we posted about an update to JAERO which allows us to now listen to AERO C-Channel voice audio. AERO is a satellite based communications service used by modern aircraft, and it's possible to easily receive the signals with an RTL-SDR, L-band patch antenna and LNA. The C-Channel conversations are typically about Medlink which is a support line for medical emergencies, but other conversations may be heard too.
While it is possible to listen to these conversations, due to legal reasons regarding patents it is necessary to compile the audio decoder manually from source, and this can be quite an involved multi-step process on Windows. Fortunately, YouTuber Corrosive, who has been making SDR related videos for some time now has put up a three part video series on the process.
JAERO was recently updated by programmer Jonti, and it now supports the decoding of AERO C-Channels which are voice audio channels that exist on both the L-Band and C-Band frequencies of AERO. AERO is a satellite based communications service used by modern aircraft. The information transferred are normally things like aircraft telemetry, short crew messages, weather reports and flight plans. It is similar information to what is found on VHF/HF ACARS.
Jonti notes that these C-Channel voice signals are very weak as they are spot beams, so a good antenna system is required to receive them. Over on Jonti's JAERO website there is now some information about these C-Channels (scroll all the way down to the C-Channel heading and read to the end of the page), as well as a frequency list. An excerpt of the information is pasted below:
Inmarsat C and in particular AERO C channels provide circuit switched telephony services to aircraft. The channels of interest are those that carry AMBE compressed audio at a channel rate 8400 bps and voice rate of 4800bps. There is also an older speech codec still in use, LPC at a voice rate of 9600 bps and an overall channel rate of 21000bps.
Telephone channels are two-way duplex. In the from-aircraft direction transmissions are roughly in the 1646 to 1652 Mhz range. The satellite up-converts these transmissions to C band, similar to T and R channel burst transmissions. So it is possible to receive the from-aircraft transmissions although it is significantly more difficult than those in the to-aircraft direction on the L band. So for those who want to get started receiving these transmissions the L band is by far the easiest place to start.
Another aspect of the C channels is that they most often use spot beams rather than global beams which makes it more difficult to receive transmissions for aircraft using a spot beam that is aimed at another region. However if you are inside the spot beam the transmissions are relatively easily received on L band. A 60 cm dish with an LHCP helical and L band LNA will provide excellent results but even with a patch antenna it can be done.
Decoding these channels to audio in JAERO takes a little effort to setup. Due to the uncertain legal status of the digital audio AMBE codec, the codec code needs to be compiled manually first, and then placed into the JAERO directory. Jontio has uploaded the AERO AMBE codec source code at https://github.com/jontio/libaeroambe. Since JAERO is a Windows program, compilation of libaeroambe involves using MSYS2.
Once fully set up with the audio codec, the audio will come out of default soundcard set in Windows audio properties, so ensure that any Virtual Audio Cables are not set as the default device.
On the L-band link you can get conversations from the ground to the plane. The C-band link would get you the plane to ground side of the conversation too, but that is a challenging signal that would require a large dish and Jonti doesn't know of anyone who has managed to receive that before. Typically the conversation topics are things like Medlink which is a multilingual medical support line that can provide backup to doctors or aircrew handling medical emergencies in the air. In Europe the USAF also apparently use C-Channel.
In a post uploaded last month we noted that Outernet was selling off some of their old L-Band satellite antennas cheaply. Nils Schiffhauser (DK8OK) decided to take advantage of the sale and bought one. Now Nils has created a blog post that shows how he's been able able to decode 12 L-Band AERO channels simultaneously with the Outernet L-band antenna, an Airspy R2 and SDR-Console V3. AERO is the satellite based version of aircraft ACARS, and it's L-band signals contain short ground to air messages like weather reports and flight plans. Multiple channels are often in use at any one time.
To achieve this Nils uses the multi-channel tuning capabilities of SDR-Console V3, which allows him to open up 12-channels, each tuned to a different AERO frequency. He then opens up 12 instances of the AERO decoder known as JAERO, and then uses VB-Cable to pipe the audio from each channel into a JAERO instance. Nils writes that the key to making JAERO run with multiple instances is to install JAERO into different folders on your PC, and give each JAERO.exe a unique file name like JAERO_1.exe.
He collects all the data into a program called Display Launcher and Nils notes that the whole set up has been stable digesting 54,000 messages over the last 24 hours.
JAERO is a program by Jonti that was released late last year which allows us to use a SDR such as an RTL-SDR to receive L-band and C-Band AERO messages. AERO is essentially the satellite based version of ACARS, and the L-band signals contains short ground to air messages with things like weather reports and flight plans intended to be transmitted to aircraft. The C-band signals are the air to ground portion of AERO and more difficult to receive as they require an LNB and large dish. However they are much more interesting as they contain flight position data, like ADS-B.