Category: Airband

Skies-ADSB: A Browser Based 3D Aircraft Tracker with RTL-SDR ADS-B Receiver

Thank you to Don for submitting news about the release of his new software titled "Skies-ADSB". Skies-ADSB is a browser based app that provides a 3D view of the air traffic around your area. The software can be served on a local networked Raspberry Pi, with ADS-B data being provided by an RTL-SDR connected to the Pi.

skies-adsb is a virtual plane spotting progressive web app (PWA) / virtual aquarium (with aircraft instead of fish) / interactive real-time simulation.

Aircraft are tracked via unfiltered ADS-B transponder data in real-time and rendered in 3D.

The ADS-B data source is meant to be a RTL-SDR receiver connected to a Raspberry Pi running on your home network.

Flight status data is provided by the FlightAware AeroAPI v2.

The aircraft photos are provided by Planespotters.net.

New HAM FM and ADS-B Radar Android Apps

Thank you to James Mainwaring for submitting news about the release of his two new RTL-SDR compatible Android Apps "Ham FM Radio (RTL-SDR)" and "ADS-B Radar (RTL-SDR)". 

The Ham FM Radio app allows the user to quickly tune and listen in to the 144-148, 150-174 and 420-450 MHz ham radio communications via presets. For the second ADS-B app, James notes that it's an early release for feedback. It allows the user to receive ADS-B data and plot it on a radar like display.

We note that we've previously posted about James' other apps for FM Radio and airband listening.

The Ham RF and ADS-B Radar Apps by James Mainwaring

rsadsb: Terminal Based Aircraft Radar on the Raspberry Pi

Thank you to Wayne Campbell for submitting news about the release of the latest 0.5.0 iteration of his RTL-SDR compatible 'rsadsb' software package that plots ADS-B aircraft positions on a terminal based display. Wayne has also created a blog post describing how to set up a Raspberry Pi based portable ADS-B setup with his software.

The package consists of two separate programs 'dump1090_rs' and 'radar' (aka adsb_deku). The dump1090_rs program is a rust implementation of the dump1090 ADS-B decoder and 'radar'  is the terminal based map. A quickstart guide for setting up both programs is also available.

The software can run on a Raspberry Pi and works well displayed on a portable touchscreen. It appears that the terminal display is very responsive with zoom controls for the radar display, a coverage map, and a tidy list of all detected aircraft.

If you're interested in terminal based displays, we've posted about a similar terminal based ADS-B plotter called 'coole-radar' in the past, as well as a terminal based spectrum analyzer display called retrogram.

rsadsb: Terminal ADS-B Radar Display

Demonstrating the New 3D Maps in SDRAngel

In December of last year we posted about a video demonstrating the many features that the SDRAngel software comes standard with. Recently they've added a new feature which are 3D maps that can be used to visualize signal data.

In the latest video demonstration they show these 3D maps projecting NOAA weather satellite images onto a 3D globe and at the same time tracking the NOAA satellites over the globe as it produces imagery. They also show the software visualizing a 3D model of aircraft on the globe, using live ADS-B data to show aircraft maneuvers when taking off, cruising and landing. With multiple SDRs they also show how the visualization can be combined with air traffic voice. Finally they also show marine vessels being visualized via live AIS data. There appear to be a wide range of vessel 3D models implemented.

A List of Crowd Sourced SDR Data Exchanges

Over on Reddit u/onemindisbuddha has put together an interesting list highlighting the number of crowd sourced data aggregators that use RTL-SDRs or similar hardware.

A common example of a data aggregator that makes use of RTL-SDRs is most of the flight tracking websites, such as FlightAware and FlightRadar24. Contributors to the service will usually set up RTL-SDR + Raspberry Pi based receivers that feed ADS-B aircraft data received from the local area to these websites. Data from contributors from all over the world are then combined onto a single map, allowing for a global live picture of aircraft traffic.  

Some other examples on the list that use RTL-SDRs include Amateur Radio APRS tracking, marine traffic, police/EMS audio feeds, train traffic, weather audio feeds, satellite ground station feeds and general web based remote SDR access. Added to the list are also aggregators based on other devices for applications like lightning detection and seismic activity reporting.

Aggregators List Partial Screenshot

SDRAngel Features Overview: ADS-B, APT, DVB-S, DAB+, AIS, VOR, APRS, and many more built-in apps

SDRAngel is a general purpose software defined radio program that is compatible with most SDRs including the RTL-SDR. We've posted about it several times before on the blog, however we did not realize how much progress has occurred with developing various built in plugins and decoders for it.

Thanks to Jon for writing in and sharing with us a demonstration video that the SDRAngel team have released on their YouTube channel. From the video we can see that SDRAngel now comes stock with a whole host of built in decoders and apps for various radio applications making it close to an all-in-one SDR platform. The built in applications include:

  • ADS-B Decoder: Decodes aircraft ADS-B data and plots aircraft positions on a map
  • NOAA APT Decoder: Decodes NOAA weather satellite images (in black and white only)
  • DVB-S: Decodes and plays Digital TV DVB-S and DVB-S2 video
  • AIS: Decodes marine AIS data and plots vessel positions on a map
  • VOR: Decodes VOR aircraft navigational beacons, and plots bearing lines on a map, allowing you to determine your receivers position.
  • DAB+: Decodes and plays DAB digital audio signals
  • Radio Astronomy Hydrogen Line: With an appropriate radio telescope connected to the SDR, integrates and displays the Hydrogen Line FFT with various settings, and a map of the galaxy showing where your dish is pointing. Can also control a dish rotator.
  • Radio Astronomy Solar Observations: Similar to the Hydrogen line app, allows you to make solar measurements.
  • Broadcast FM: Decoding and playback. Includes RDS decoding.
  • Noise Figure Measurements: Together with a noise source you can measure the noise figure of a SDR.
  • Airband Voice: Receive multiple Airband channels simultaneously
  • Graves Radar Tracker: For Europeans, track a satellite and watch for reflections in the spectrum from the French Graves space radar. 
  • Radio Clocks: Receive and decode accurate time from radio clocks such as MSF, DCF77, TDF and WWVB.
  • APRS: Decode APRS data, and plot APRS locations and moving APRS enabled vehicles on a map with speed plot.
  • Pagers: Decode POCSAG pagers
  • APRS/AX.25 Satellite: Decode APRS messages from the ISS and NO-84 satellites, via the built in decoder and satellite tracker.
  • Channel Analyzer: Analyze signals in the frequency and time domains
  • QSO Digital and Analog Voice: Decode digital and analog voice. Digital voice handled by the built in DSD demodulator, and includes DMR, dPMR and D-Star.
  • Beacons: Monitor propagation via amateur radio beacons, and plot them on a map.

We note that the video doesn't show the following additional features such as an analog TV decoder, the SDRAngel "ChirpChat" text mode, a FreeDV decoder and several other features.

dumphfdl: A Multichannel HFDL Decoder for SDR

Thank you to Tomasz Lemiech for writing in and sharing with us the release of his new software "dumphfdl". Tomasz is the author of dumpvdl2 and also maintains RTLSDR-Airband. Regarding dumphfdl Tomasz writes:

dumphfdl is a multichannel HFDL decoder for Linux. HFDL (High Frequency Data Link) is a protocol used for radio communications between aircraft and a network of ground stations using high frequency (HF) radio waves. Thanks to the ability of short waves to propagate over long distances, HFDL is particularly useful in remote areas (eg. over oceans or polar regions) where other ground-based communications services are out of range. While many aircraft carriers prefer satellite communications these days, HFDL is still operational and in use.

Available HFDL decoding applications typically run on Windows and take an audio signal on input. The signal has to be delivered to the decoder via a physical cable from an external shortwave receiver or via a virtual cable from an SDR. This makes these apps inherently single-channel. This shortcoming does not apply to dumphfdl which interfaces directly with the SDR, so no pipes or virtual audio cables are needed. The program can decode multiple HFDL channels simultaneously, up to available CPU power and SDR bandwidth (there is no fixed channel count limit).

dumphfdl uses SoapySDR library (https://github.com/pothosware/SoapySDR) to communicate with the radio. Any HF-capable receiver for which a SoapySDR driver exists, should work. I have tested it briefly with an RTL-SDR v3 dongle in direct sampling mode. While I had a bit of a success with it, HFDL signals are often quite weak, so a real HF radio (like SDRPlay RSP1A or Airspy HF+) gives much better results (more decoded messages).

The program may log decoded messages to a file or send them over the network for external processing and storage.

HFDL messages often contain diagnostic data accompanied with aircraft position information. The program may extract this data from decoded messages and provide a positional data feed for external plane tracking apps (eg. Virtual Radar Server). An example screenshot from VRS is attached - taken after about 2 hours of decoding eight HFDL channels spread across three HFDL subbands: 6.6, 8.9, and 10.0 MHz with two dumphfdl instances on two radios - RSP1A and Airspy HF+. Definitely a nice way to expand the coverage of a home ADS-B radar :-)

Refer to the README.md file in the project repository for more details. The program is still under development, so new features and further improvements might be expected in subsequent releases.

dumphfdl - decoded aircraft positions plotted on a map

SDRUno 1.41 Released: Scheduler and ADS-B Plugins Added

Last week SDRplay released version 1.41 of their SDRUno software platform. SDRuno is the official software for the SDRplay line of low cost software defined radio devices. The main new feature is the addition of the scheduler facility which allows users to easily schedule recordings. This is great if for example you wish to automatically record a shortwave programs playing overnight.

SDRuno V1.41 was fully released today. It includes the much requested full scheduler facility which allows you to set up numerous recording events for your RSP. As well as providing all the expected calendar options (time of day, date, start and stop times, repeating options and so on), you can also set the ‘profile’ for each recording – this allows you to pre-set frequencies, bandwidths, demodulator options (AM/FM/USB/LSB etc.), choice of filters and antenna port selection. Additionally you can choose the settings for connectivity to other third party software or the running of a specific plugin.

Introduction to SDRuno 1 41 - Scheduler & Profiles (VID597)

The new version also includes a finalized version of their ADS-B aircraft tracking plugin. Last month TechMinds tested the ADS-B plugin beta, noting that it worked well, but there were bugs with the built in mapping feature. In the official tutorial video the ADS-B plugin is demonstrated and shows that the mapping problem is fixed.

SDRuno ADSB Plugin (VID599)