Category: RTL-SDR

OH2BNF’s Plan for a Large Scale Raspberry SDR (LSR-SDR) Based on RTL-SDR Dongles

Thanks to OH2BNF for writing in and sharing his plan to build a "Large Scale Raspberry SDR" (LSR-SDR), which will be based on RTL-SDR dongles. To create the LSR-SDR he plans to take a 19" rack which can support up to 40 Raspberry Pi 3's, plus up to 160 USB devices, and turn it into a massive SDR array. The rack is key as it allows for simple power management of all the Pi's and other devices to be connected.

OH2BNF plans to connect 20 or so RTL-SDRs, with some operating individually and with others operating coherently via a common external oscillator. The rack may also contain some transceivers, an ICOM IC-7300, antenna switches, upconverters, LNAs and other hardware too. Once completed he hopes to move the system to a low RFI environment and operate the unit entirely remotely. With this he hopes to solve his local RFI issues. He also writes regarding applications:

Primary objectives are to incorporate automated adaptivity to the system at large – for example leveraging on band condition information, WSPR (Weak Signal Propagation Report) & friends, automated signal detection and decoding, great flexibility in terms of individual cluster nodes being able to fast respond to various needs and tasks, strong emphasis in parallel processing where applicable depending on the problem type and dataset, support for multiple end users benefiting from the computing and reception capacity of the cluster – to name the most significant.

It's an interesting idea for sure, and we hope to see some updates from OH2BNF in the future.

The Raspberry Pi 19" Rack
The Raspberry Pi 19" Rack

The Lego Pi RTL-SDR FM Radio

Thank you to RTL-SDR.com reader 'JJ' for writing in with a submission for his Lego Pi Radio. JJ's Lego Pi Radio consists of a Raspberry Pi and RTL-SDR and is designed to be an FM Radio, MP3 and internet radio player all in one, with a cute enclosure made out of Lego bricks. The radio is controlled by an external numpad which allows for a number of presets to be chosen from.

The internet radio and MP3 players are handled in software by VLC player and a script written by JJ is used to map the numpad to RTL-SDR FM presets, or MP3 and internet radio functions. The whole unit is run headless and if anything needs to be updated such as internet radio links, JJ simply accesses the unit via an SSH shell. JJ also writes how he had to try 3 different brands of speakers before he found one that could be driven directly from the Pi with adequate sound quality. In the future he hopes to add a bluetooth remote.

One problem that JJ found was that the standard rtl_fm did not produce high quality audio. Fortunately he found the NGSoftFM software which is capable of outputting high quality FM stereo sound and is compatible with RTL-SDR dongles.

In the past we've seen a similar project that was implemented on a BeagleBone Black. The idea in that project was to switch between FM and internet radio depending on the reception quality.

QuestaSDR: New RTL-SDR Software for Android

Last year we posted about QuestaSDR, which is a simple SDR multi-mode GUI that is compatible with the RTL-SDR. Since then QuestaSDR has evolved, and is now available on Android devices as well. It looks to be a nice alternative to RF Analyzer and SDR Touch which are the most popular RTL-SDR Android apps. The description of Android QuestaSDR reads:

QuestaSDR - powerful and flexible, cross-platform Software Defined Radio Application (SDR). Built-in scheduler architecture provides integrate plugins, plugins kits and multi - UI. Typical applications are DXing, Ham Radio, Radio Astronomy and Spectrum analysis.

Support Hardware:
- RTLSDR Dongle

Main features:
- Dark, Ligth, Universal, Material application style
- Many spectrum settings (FFT size, waterfall FPS and color theme)
- AM/SSB/NFM/WFM demodulator
- RDS decoder
- Record AF file
- Frequency bookmarks
- Web remote
- Supported IF-adapter, upconverter, downconverter hardware
- Rig samplerate, frequency, level and iq disbalance calibrate

To start using QuestaSDR, you will need:
- RTL-SDR dongle
- USB OTG Cable - used to connect a RTLSDR to your Android device.

Connect the USB dongle to the USB-OTG, then insert the free end of the cable into the USB port of your Android device and launch the QuestaSDR! Now you can listen to live frequency range shortwave, VHF, UHF.

Feedback and bug reports are always welcome.

Please note that I am not responsible for any legal issues caused by the use of this application. Be responsible and familiarize yourself with local laws before using.

QuestaSDR - New RTL-SDR Compatible Android App
QuestaSDR - New RTL-SDR Compatible Android App

Investigating the Adjustable IF Bandwidth on the R820T Chip

Over on his blog, Thierry Leconte has been writing about some IF bandwidth experiments that he's performed on the R820T2 chip. This is the tuner chip that is used in most RTL-SDR dongles, and well as on the Airspy R2 and Mini SDRs. It has a programmable IF bandwidth and high pass filter which can be used to filter neighboring interfering signals out to reduce imaging and overload problems. In the RTL-SDR and Airspy drivers the bandwidth is adjusted to a fixed setting depending on the bandwidth selected.

To perform the tests he uses a noise source connected to his Airspy, varies the IF filter bandwidth and then plots the results. He finds that there are two adjustments for the IF filter, one coarse and one fine, as well as an additional high pass filter. By manually reducing these settings it's possible to get better filtering at the expense of reduced bandwidth. 

He notes that reducing the bandwidth is useful for his two apps, acarsdec and vdlm2dec which receive ACARS and VDL aircraft signals. These signals are not high in bandwidth so they can easily benefit from tighter filtering.

Adjusting the High Pass Filter on the R820T2
Adjusting the High Pass Filter on the R820T2

Hiring a Dev for Direction Finding & Passive Radar Software

We are currently looking for a dev or engineer to work on a short project that will involve developing easy to use software for passive radar and direction finding applications.  The hardware will utilize low cost phase coherent RTL-SDR's. The project is paid and will probably last about a month (depending on your speed on work). It would suit a student,  researcher or hobbyist with some spare time.  If you are familiar with RTL-SDR's, C/C++/Python, have DSP experience, and ideally have experience with direction finding please apply with a short bio, CV and relevant experience to [email protected] for more information. If the project is successful there may be future work. Thanks!

Automatically Receiving, Decoding and Tweeting NOAA Weather Satellite Images with a Raspberry Pi and RTL-SDR

Over on Reddit we've seen an interesting post by "mrthenarwhal" who describes to us his NOAA weather satellite receiving system that automatically uploads decoded images to a Twitter account. The set up consists of a Raspberry Pi with RTL-SDR dongle, a 137 MHz tuned QFH antenna and some scripts.

The software is based on the set up from this excellent tutorial, which creates scripts and a crontab entry that automatically activates whenever a NOAA weather satellite passes overhead. Once running, the script activates the RTL-SDR and APT decoder which creates the weather satellite image. He then uses some of his owns scripts in Twython which automatically posts the images to a Twitter account. His Twython scripts as well as a readme file that shows how to use them can be found in his Google Drive.

mrthenarwhal AKA @BarronWeather's twitter feed with automatically uploaded NOAA weather satellite images.
mrthenarwhal AKA @BarronWeather's twitter feed with automatically uploaded NOAA weather satellite images.

Video on using an RTL-SDR + Noise Generator as a Poor Man’s Network Analyzer

Over on YouTube user AE0AI has uploaded a video where he explains how he uses an RTL-SDR and a home made noise source as a poor man's network analyzer. A network analyzer is a tool that allows you to analyze the response of RF devices, such as filters. By using a noise source together with an RTL-SDR the same functionality as a network analyzer can be obtained, however of course with less accuracy.

In the video AE0AI shows us his home made noise generator, which is a based on a simple circuit that he found online. He then shows the noise generator connected to the RTL-SDR, which shows that his home made generator works up to about 40 MHz. Later in the video he tests a home made 40m filter with the noise source and RTL-SDR, and the response is easily visible. With the response visible he is able to tune the filter by adjusting the inductor windings.

We have a tutorial on the same concepts available here.

Information on Time Correlating Signals with RTL-SDRs

In a previous post back in September 2017 Stefan Scholl (DC9ST) treated us to a very interesting write up about how to localize transmitters to within a few meters using time difference of arrival (TDOA) techniques with multiple RTL-SDR dongles spread out over an area.

Stefan has recently added to his post now with some additional information on how to properly correlate signals received between multiple RTL-SDR dongles, which is one of the key parts to TDOA. He writes that he covers the following questions:

- What signal parameters influence the quality of the correlation?
- Which type of correlation calculations are available (four)
- Which are suitable with RTL-SDRs, considering noise and phase and frequency offset?

Stefan writes that his findings could be interesting to people interested in the following techniques:

- TDOA localization
- Synchronizing several RTL-SDRs
- Passive Radar

Comparing various bandwidth sizes on correlation quality
Comparing various bandwidth sizes on correlation quality