Tagged: std-c

Two reviews of our new L-Band Patch Antenna + Stock Update

Last month we released our new L-band active patch antenna for sale, and not too long after we had a review from Frugal Radio praising it. We now have two more YouTube reviews available to share.

The first is from Tech Minds who does a teardown and demonstrates it receiving and decoding the Inmarsat STD-C NCS channel, receiving and decoding GPS and receiving Iridium signals. The second is from Mike Ladd from SDRplay, who tests it with an SDRplay RSP1A software defined radio. He shows that the patch works perfectly with an RSP1A, and demonstrates it receiving and decoding STD-C while mounted on the dash of his vehicle.

L-Band Patch Stock Availability Note: We note that we are already close to selling out of the first batch of these units as they sold much faster than expected! New sales of this patch are currently backordered but we expect to have a few more units from this first batch available by the end of next week. Also the freighter with Amazon USA stock should be arriving any day now, but it could still take a few weeks to get through the port and reach the warehouse due to the current port delays.

The second production batch of this antenna might still be a while away due to the electronic component shortage crisis occurring now, so if you were thinking about picking one up, please order ASAP.

RTL-SDR BLOG L-BAND Patch Antenna Version 2 - Inmarsat - Iridium - GPS

SDRplay RSP1a - RTL SDR Blog L-Band Patch antenna

Preorder Sale: Active L-Band 1525-1660 Inmarsat and Iridium Patch Back In Stock for $44.95

We have just received stock of our new L-band active patch antenna design. The antenna is designed for receiving L-band satellites such as Inmarsat, Iridium, GPS and other satellites that transmit between 1525 - 1660 MHz (please note that you cannot use it for weak signals that require a dish like HRPT or GOES). The antenna comes as a set with a large suction cup, 3M RG174 extension cable and bendable tripod to help with mounting. Preorder pricing is US$44.95 including free worldwide shipping to most countries shipped from our warehouse in Shanghai. At the end of this week (extended for one more week!) pricing will rise to the standard cost of US$49.95. Amazon stock will require time, and won't be in for at least 6+ weeks.

Please see our store to order the unit

Like our previous patch design, this is an actively amplified antenna as it contains a built in low noise amplifier which takes power from a 3.3 - 5V bias tee. This power is available from from our RTL-SDR Blog V3 dongles, and other SDRs like the Airspy, HackRF and SDRplay. It also has a built in SAW filter after the LNA to help reduce terrestrial interference.

Compared to the previous design the new patch is larger (175 x 175 mm) with higher gain and wider radiation pattern. This allows for much easier pointing of the antenna and for much stronger signals. The upper frequency range has also been extended to 1660 MHz from 1625 MHz. The included suction cup is also much larger allowing for the patch to point at more angles without being restricted by the window. The patch is enclosed within a new weatherproof plastic enclosure. 

L-Band Patch with Accessories
L-Band Patch Mounting Examples

The screenshots below show the patch receiving various signals like AERO, STD-C and Iridium

Inmarsat Reception
Inmarsat Reception
Airspy Showing Patch Bandwidth
GPS "hump" visible

Usage Tips

  • The antenna should be used with one meter or more of coax cable. It may perform poorly if the RTL-SDR is placed right at the antenna due to interference. If you want to run very long cable, then low loss coax should be used. 
  • The patch can be used flat, or angled towards the satellite. Angling it towards the satellite will yield significantly higher gain.
  • If you have very strong cell phone interference in your area, try using the patch a bit lower to the ground, and use buildings to block the interfering signal.
  • If you want to mount this on a car roof, you can use a standard mag-mount camera adapter.
  • When using the suction cup, ensure you wipe down the cup and the window surface before sticking it on. Have a backup plan in case the suction fails.

What can you do with this antenna?

Testing out the SDR-Kits L-band Inmarsat Patch Antenna for AERO

The SDR-Kits L-band Patch antenna is a modified GPS antenna designed for receiving Inmarsat satellite stations such as AERO and STD-C. They have another version for receiving Iridium frequencies as well. The patch costs £12.90 inc VAT in UK, or approx US$14 for non-UK customers. 

Over on his channel Frugal Radio has uploaded a video where he tests this patch antenna with an RTL-SDR Blog V3. The built in bias tee on the V3 is used to power the antenna. In the video he shows how he's able to receive and decode AERO using the JAERO decoding software and how he uses a a metal backing to improve reception.

SDR-Kits frugal L-band Inmarsat patch antenna review decoding CPDLC ADS-C with RTL-SDR v3 dongle!

YouTube Series on Inmarsat Decoding with Scytale-C

Paul (microp11) is the programmer behind the Scytale-C Inmarsat decoder which has become very popular with RTL-SDR owners. With Scytale-C, and RTL-SDR and an appropriate L-band antenna and amplifier it is possible to receive STD-C NCS data from Inmarsat satellites. This is a public broadcast which contains information like search and rescue (SAR) and coast guard messages as well as news, weather, pirate activity and other incident reports. If you're interested, we have a tutorial available here which uses different software.

Paul has recently created a 6-part video series explaining Scytale-C and all it's features. As well as showing how to setup a Scytale-C decoder with the SDR# plugin in order to receive the STD-C text data via the UI, Paul's series goes into more depth showing how to review and inspect the raw data packets, how to monitor multiple Inmarsat channels at once using SDR# Spyservers and how to use the map feature for plotting coordinate and region data.

Inmarsat-C decoder Scytale-C Part II

Testing a PCB Patch Antenna and Radiosonde QFH Antenna for Inmarsat and Iridium Reception

Over on his YouTube channel Tech Minds has been testing some antennas for Inmarsat and Iridium L-Band satellite reception. Inmarsat is a satellite service that runs on geostationary satellites, and one can be received from almost anywhere in the world. There are various services, but the ones that are easily decodable are STD-C EGC and AERO. EGC contains text information search and rescue (SAR) and coast guard messages as well as news, weather and incident reports, and AERO is a form of satellite ACARS, and typically contains short messages from aircraft.

In the first video Tech Minds tests what appears to be an as of yet unreleased prototype PCB patch antenna being designed by NooElec. The PCB patch antenna is combined with a SAWBird Inmarsat LNA and an RTL-SDR. With it he's able to receive STD-C and AERO signals.

In the second video Tech Minds tests an L-Band QFH antenna salvaged from a Vaisala weather balloon radiosonde. The QFH is designed for GPS frequencies, but can potentially be used at the slightly higher Inmarsat and Iridium frequencies. Tech Minds combines the QFH antenna with a SAWBird Inmarsat LNA, but unfortunately finds that reception is too weak for any AERO decoding to be possible. However, when used on the higher Iridium frequencies the antenna works well, and he's able to decode packets with Iridium Toolkit.

New Inmarsat Antenna from NooElec

Testing A QFH Antenna For Inmarsat And Iridium

RTL-SDR Blog L-Band Patch Antenna Preview

We note that over the last several months we have been working on our own L-band patch antenna that will cover Inmarsat, GPS and Iridium frequencies all in one. We expect manufacturing to be completed near the end of the month, or early next month.

The antenna is a ceramic patch, and will come in a waterproof enclosure. It will be possible to easily mount the antenna on a window or elsewhere using the standard suction cup and bendy legs tripod included with our dipole kits. Target price is US$39.95 including the suction cup, tripod, 2M coax and shipping, but we may have it initially on sale for a lower price.

This is cheaper than buying an Inmarsat & Iridium LNA, but a bit more than the SDR-Kits patches that they brought out a few weeks ago. Although performance of our patch is much better. Keep an eye out for the initial information post coming in the next few days.

RTL-SDR Blog L-Band Patch Preview (RTL-SDR for Scale)
RTL-SDR Blog L-Band Patch Preview (RTL-SDR for Scale)

Mike Tests out L-Band STD-C and AERO with a Low Cost Modified GPS Antenna

SDR-Kits.net have begun selling low cost GPS antennas that are modified to receive the Inmarsat satellite frequencies between 1535 MHz to 1550 MHz. They also have a version for Iridium satellites that receives 1610 MHz to 1630 MHz. The antennas are powered by a 3-5V bias tee, so they should work fine with SDRplay, Airspy and RTL-SDR Blog V3 units.

Mike Ladd from SDRplay has recently sent us a guide to receiving AERO and STD-C messages on L-band with the SDR-Kits antenna and an SDRPlay unit running SDRUno (Megaupload link).

AERO messages are a form of satellite ACARS, and typically contain short messages from aircraft. It is also possible to receive AERO audio calls. STD-C aka FleetNET and SafetyNET is a marine service that broadcasts messages that typically contain text information such as search and rescue (SAR) and coast guard messages as well as news, weather and incident reports. Some private messages are also seen. To decode AERO Mike uses JAERO, and for STD-C he uses the Tekmanoid STD-C decoder.

Mike has also created a very handy bank of frequencies for the SDRUno frequency manager which can be downloaded from here.

We note that if you're interested in waiting, at the end of September we will have an L-band patch antenna set available too. Our antenna will work from 1525 up to 1637 MHz. Prototypes have shown have shown good Inmarsat, Iridium and GPS reception. More details coming next month when manufacturing gets closer to finishing up.

Screenshot of the Tekmanoid Decoder from Mikes Tutorial
Screenshot of the Tekmanoid Decoder from Mikes Tutorial

SignalsEverywhere: Decoding Inmarsat EGC and AERO ACARS

On his latest video Corrosive from the SignalsEverywhere YouTube channel discusses Inmarsat LES EGC and AERO ACARS decoding. Inmarsat is a satellite provider that has multiple geosynchronous satellites that can be received from almost anywhere in the world at around 1.5 GHz with an RTL-SDR and appropriate antenna + LNA. Inmarsat EGC and AERO are two channels on Inmarsat satellites that can easily be decoded.

The Enhanced Group Call (EGC) messages typically contain text information such as search and rescue (SAR) and coast guard messages as well as news, weather and incident reports. AERO messages on the other hand are a form of satellite ACARS, and typically contain short messages from aircraft. More interestingly with a bit of work compiling audio decoders, it is also possible to listen in to AERO C-Channel conversations, which is an emergency phone call service available on some aircraft.

In his video Corrosive gives an overview and demonstration of EGC and AERO reception.

Inmarsat LES EGC and AERO ACARS Decoding

Creating an Inmarsat STC-C EGC Live Stream with an RTL-SDR, Raspberry Pi and OpenWebRX

Thanks to Zoltan (aka Veryokay on YouTube) for submitting information about his Inmarsat STD-C EGC live stream setup. His setup allows him to access the Inmarsat STD-C signal from anywhere in the world over the internet, thanks to the use of an OpenWebRX server. Inmarsat STD-C is a geostationary satellite service that provides information for search and rescue, as well as news, weather and incident reports for mariners. We have a tutorial from a few years ago which shows some example messages. OpenWebRX is an efficient SDR streaming server platform that allows you to access RTL-SDR's and other SDRs from anywhere in the world via an internet connection.

In his setup Zoltan uses a Raspberry Pi 3, RTL-SDR Blog V3, L-band LNA and L-band antenna for receiving and processing the signal. Power is provided via a Power over Ethernet (PoE) adapter, and the whole thing is placed outside, in a weatherproof plastic lunchbox.

The video shows the hardware, and then goes on to describe the software setup, along with a demonstration of the OpenWebRX stream. More information as well as the link to his publicly accessible OpenWebRX Inamrsat STD-C stream can be found on his blog post.

INMARSAT STD-C EGC live streaming