Tagged: std-c

Scytale-C: A New Inmarsat STD-C Decoder + Tekmanoid STD-C Decoder Updates

Over on the BitBucket code repository a new open source decoder for Inmarsat STD-C called Scytale-C has been released. The software is available for Windows, and a ready to use binary .exe file can be downloaded from the downloads section of the BitBucket repo.

Inmarsat STD-C is an L-band geosynchronous satellite signal that transmits at 1.541450 GHz. This means that the signal can be received with a simple patch antenna, LNA and RTL-SDR dongle. The satellite is geosynchronous (stationary in the sky), so no tracking is required. On the STD-C channel you'll see messages mainly for mariners at sea such as weather updates, military operational warnings, pirate sightings/reports, submarine activity, search and rescue messages and more. If you are interested we have a tutorial based on other software packages available here which also shows some STD-C message examples. The tutorial can easily be adapted for use with Scytale-C instead.

We've also seen on Twitter that Scytale-C beta tester @otti has noted that a SDR# plugin based on Scytale-C seems to be in the works.

Scytale-C Screenshot
Scytale-C Screenshot

An Important Note on the Coding Ethics of Scytale-C + Tekmanoid Decoder Updates

We feel that it is responsible to make a note on coding and licencing ethics about this software. Originally the software was illegally decompiled by 'microp11' from the closed source Tekmanoid STD-C decoder written by Alex and re-released in a different programming language with a different GUI as the 'open source' B4000Hz software. After Alex took action and micrcop11 realized what he did was wrong he took B4000Hz down. Since then microp11 notes that he has written Scytale-C fully from scratch without the closed source code knowledge. But to be unquestionably legal a full two man clean-room rewrite would probably need to be done as once knowledge of source code is acquired it can be difficult to think of a separate implementation (a somewhat related post discussing this on StackExchange).

However, Alex has noted microp11's passion, and microp11's remorse at the initial decompilation and release of B4000Hz, and has decided to take the higher road and not pursue any further DMCA complaints. Instead he has kindly decided to allow the software to exist, but with acknowledgement of Tekmanoid included. We're glad that the matter was resolved amicably, but still if you use the Scytale-C software we would urge you to still consider the free or paid version of the Tekmanoid STD-C decoder to support Alex

Recently Alex has updated his software to include a spectrum analyzer and more appealing method of displaying EGC messages. Alex writes regarding his Tekmanoid STD-C decoder:

This software [Tekmanoid STD-C Decoder] is closed source and has been since it was first released around 2009. At that time I made a choice to keep the source private but share the executable EGC app for free with the public, so that others could have some fun on the L-band!

The "pro" EGC-LES version was developed in parallel the same year but kept private, nobody even knew it existed. Although I recognized its potential financial value I didn't take "advantage" of it. Firstly because it was a personal hobby project (can't put a price on intellectual property) and second, because I didn't want to help to further expose people's private communications to the open public.

In February 2017 a raw clone of my de-compiled code was made public, to be later withdrawn with an apology. That is the moment I decided to release the PRO version as payware to the public. Many new features present in today's PRO version have been proposed by users and my aim is to satisfy everyone's wishes.

Recently another similar project was released from the same author, with lots of documents to support the code and only minute traces of the initial de-compilation. This time one could indeed claim to have built it "from scratch" - codewise at least. The fact still remains that *part* of the knowledge (not 'code' necessarily) required to put it together was obtained from this initial reverse engineering process.

Despite the negativity surrounding this case, I decided to withdraw my takedown request on the project in exchange for an acknowledgement to the original Tekmanoid decoder, as this person himself wished to include from the start anyway.

To end it with another positive note, I can only hope this newcomer will bring something new to the scene, and that we will see some interesting things!

Below is a video of the updated Tekmanoid decoder.

Update: Microp11 wrote to us after this post went out and wrote the following:

I just want to let you know that scytalec is not a re-write. It is another solution of solving the problem of decoding the Inmarsat-C. Written from scratch. Inadvertently any Inmarsat-C decoder in the 1.5GHz band will have the same the building blocks and they are now documented in detail in the bibliography published with my code. The information is hard to find. All the information is from publicly available sources only. Such that the code will be able to withstand the obstacles or remaining open source. The majority of the documentation is technical manuals, as they each in part reveal a piece of the puzzle, and collectively they contain an almost complete communication protocol. Some are books and they must be the specific revision mention within the bibliography. Moreover if any coder will read the documentation they will actually be able to write a better decoder as I found parts of it too late for a more elegant code writing. And this is the whole idea of scytalec, that anyone can do it if they put their mind to it. There is enough documentation to tackle the C-band as well. And giving enough time, I might be planning on doing that after the sdr# plugin I’m working at. Not alone, as I was and I am being helped by others to which I am grateful and their names were and will be mentioned within the code. Just so you will have an idea of how deep the documentation correctness went for this project, even if a code comment was incorrect, say I was referring to a frame as a “block” or “part” I would get an admonishing email on that. So yes, I have high reasons to stand by this code originality.

Testing the Prototype Outernet Patch Antenna with Built in RTL-SDR

A few months ago satellite data broadcasting company Outernet created a limited number of prototype receivers that combined an L-band satellite patch antenna, LNA and RTL-SDR into a signal unit. This was never produced in bulk as they found it to be too noisy having the RTL-SDR so close to the antenna, but nevertheless it still worked fairly well.

Over on YouTube max30max31 bought one of these prototype units and made a video about using it for receiving and decoding various L-band satellite signals. In the video he first shows an overview of the product and then shows it receiving and/or decoding some signals like Inmarsat STD-C, AERO and Inmarsat MFSK.

Outernet SDRx Clearance Sale $15: RTL-SDR with built in L-band LNA and Filter

Recently the Outernet project transitioned from using RTL-SDR dongles and C.H.I.P single board computers to using their Dreamcatcher board, which is an RTL-SDR and computing board all in one. In between the transition they also produced a number of ‘SDRx’ dongles. These were custom RTL-SDR dongles with a built in L-band LNA and filter. As they no longer need the SDRx they have them on clearance at their store.

The clearance price is $15 USD which is an excellent deal. Remember though, that the SDRx is limited in frequency range – it is designed for receiving L-band satellites between 1525 – 1559 MHz and the filter will cut off all other frequencies.

The Outernet SDRx on Clearance
The Outernet SDRx on Clearance

Just add a simple L-band tuned antenna to the port and you should be able to receive Inmarsat and a signal like STD-C, AERO or the Outernet signal. A suitable antenna might be a homebrew patch, helix, cooking pot antenna or even a small tuned V-dipole antenna can work for the stronger AERO signals.

We also see that the price of their L-band Outernet active ceramic patch antenna has been dropped down slightly to $25 USD. This antenna is bias tee powered and can be used with a V3 dongle or their Dreamcatcher hardware. The Dreamcatcher itself is also now reduced in price to $59 USD.

We have a review of the Dreamcatcher and active ceramic patch antenna available here.

Outernet Dreamcatcher and L-Band Active Ceramic Patch
Outernet Dreamcatcher and L-Band Active Ceramic Patch

We also now list Outernet products in our store. These are commission sales so we receive a little bit per purchase which supports the blog, and the items are shipped by Outernet within the USA.

If you were unaware, Outernet is a free L-band based satellite service that provides content such as news, weather data, APRS repeats and more. Currently you can get about 20MB of data a day. Outernet receivers are also all based around the RTL-SDR, allowing for very cheap receivers to be built

Outernet: Patch antenna now sold seperately + other products

Back in June we tested Outernet’s new Dreamcatcher which is an ARM based computing board with RTL-SDR and L-band LNA built in. The $99 USD kit also included an external active L-band patch antenna. The Dreamcatcher full kit has now been reduced to $89 USD, and the active L-band patch antenna can also now be purchased by itself for $29 USD. The active patch antenna is also compatible with the bias tee on our V3 dongles and is a good low cost option for exploring most L-band satellite signals like Outernet, Inmarsat STD-C and AERO around 1542 MHz. The filter does unfortunately cut off the higher Iridium frequencies though.

They are also selling off their older L-band SDRx RTL-SDR boards at a reduced price of $20 USD. The SDRx is a RTL-SDR PCB with a built in L-band LNA and filter, but unlike the Dreamcatcher does not have built in computing hardware. They also have a limited $25 USD edition version of their active patch antenna which includes a built in RTL-SDR. This version is a bit more noisy compared to the standard active patch, but may be an interesting experimental antenna for some.

Current Outernet Products
Current Outernet Products

Tekmanoid STD-C Decoder Updated: New Paid LES Decoder + EGC Visualization

The Tekmanoid EGC STD-C decoder was recently updated and a new commercial paid version was released. The paid version now supports the decoding of LES STD-C messages. Previously the only other decoder that we knew of which was able to decode LES messages was the www.inmarsatdecoder.com software. The inmarsatdecoder.com software costs €100, and while the price for the Tekamanoid decoder is not advertised, it is less than €100, and a bit more affordable for the average person.

Tekmanoid STD-C Decoder Receiving LES Message.
Tekmanoid STD-C Decoder Receiving LES Message.

The free versions of both decoders only decode the EGC broadcast messages which contain SafetyNET messages. These include messages like weather reports, shipping lane activity and hazards such as submarine cables and oil rig movements, pirate activity, refugee ship reports, missing ship reports, and military exercise warnings. 

The paid version can decode the other non-broadcast private LES STD-C channels. LES STD-C channels typically contain email like messages sent to and from ships. Mostly it’s company messages about the ship route plans, cargo discussions, repair/fault discussions, ship performance information and weather reports etc. Sometimes small files are also downloaded. Each Inmarsat satellite contains about 7 LES channels each run by a different telecommunications company, so one may be of interest to you.

The paid version of the Tekmanoid decoder also has a nice feature for visualizing the SafetyNET EGC messages. Every now and then an alert containing coordinates and an area is sent out. Usually it is something like a distress alert from an EPIRB or the search area for a missing vessel. The decoder generates an HTML file that displays these areas on a map, alongside the text message.

STD-C EGC Distress Alert on map
STD-C EGC Distress Alert on map

The author of the Tekamnoid software allowed us to test his new paid version for free. We ran the software using signal from an Outernet patch antenna and LNA. An RTL-SDR V3 + SDR# was used as the receiver, and the audio was piped to the Tekmanoid decoder with VB-Cable. Decoding was almost flawless on both LES and EGC STD-C channels. In a previous recent update the Tekmanoid decoder was updated for improved decoding performance, and now in our opinion it is almost or just as good as the inmarsatdecoder.com software.  

If you are interested in learning more about decoding Inmarsat STD-C we have a tutorial available here. LES channels for the Inmarsat satellite in operation over your geographic location can be found on UHF-Satcom’s website.

LES STD-C Inmarsat Channels
LES STD-C Inmarsat Channels

Remember that LES STD-C messages are not publicly broadcast, so in some countries it may not be legal to receive them. Most countries will have a law that says you can receive and decode the data, but you may not act upon or use to your advantage any information from the messages.

—–Hz: A New STD-C Inmarsat Decoder

UPDATE: Unfortunately we have been informed that the code base of this software was illegally decompiled and reused in an almost unchanged way from an already available closed source decoder. This means the program itself is illegal and totally unethical.

Please respect the original developers hard work and do not download this software.

A new STD-C Inmarsat decoder called —-Hz has recently been released. The decoder is Windows based and simply listens to the demodulated Inmarsat STD-C audio from a program such as SDR#. This means that it is compatible with the RTL-SDR, and any other SDR that can receive Inmarsat. 

We gave the software a brief test and it ran very well, and managed to decode several SafeteNET messages without issue, maintaining a good lock most of the time. The author writes that he plans to improve on the software in the future by creating a web service based version of the software.

Currently there are two other Inmarsat decoders available. One is called InmarsatDecoder and the other is the Tekmanoid decoder. The InmarsatDecoder is generally regarded as the best, but the Tekmanoid decoder was recently updated for improved performance. The new software appears to be about the same as the Tekmanoid decoder.

Inmarsat STD-C messages are broadcast from geostationary satellites in the L-band at around 1.5 Ghz. They send mostly marine based messages such as the following quoted from the ——Hz website:

  • Safety: high seas, tropical storm warnings, ice accretion…
  • Shipping activity: moving oil rigs, submarine cable deployment and repairs…
  • Distress reports: MOB, ships lost at sea, migrant ship reports…
  • Military exercises (firing practice, no fly zones…)
  • Pirate at sea reports…

If you are interested in learning how to decode STD-C we also have a tutorial available here

The b4000Hz Inmarsat STD-C Decoder
The ——Hz Inmarsat STD-C Decoder

Review: Outernet LNA and Patch Antenna

Recently we posted news that Outernet had released their 1.5 GHz LNA, Patch Antenna and E4000 Elonics RTL-SDR + E4000/LNA Bundle. When used together, the products can be used to receive the Outernet L-band satellite signal, as well as other decodable L-band satellite signals like AERO and Inmarsat STD-C EGC. Outernet is a new satellite service that aims to be a free “library in the sky”. They continuously broadcast services such as news, weather, videos and other files from satellites.

EDIT: For international buyers the Outernet store has now started selling these products at http://store.outernet.is.

A few days ago we received the LNA and patch antenna for review. The patch antenna is similar to the one we received a while ago when writing our STD-C EGC tutorial, although this one is now slightly larger. It is roughly 12 x 12 cm in size, 100g heavy and comes with about 13 cm of high quality RG316 coax cable with a right angled SMA male connector on the end. The coax cable is clamped on the back for effective strain relief.

The Outernet patch antenna and LNA
The Outernet patch antenna and LNA

The LNA is manufactured by NooElec for Outernet. It amplifies with 34 dB gain from 1525 – 1559 MHz, with its center frequency at 1542 MHz. It must be powered via a 3 – 5.5V bias tee and draws 25 mA. The package consists of a 5 x 2.5 cm PCB board with one female and one male SMA connector. The components are protected by a shielding can. Inside the shielding can we see a MAX12000 LNA chip along with a TA1405A SAW filter. The MAX12000 (datasheet here) is an LNA designed for GPS applications and has a NF of 1 dB. It has a design where there are two amplifiers embedded within the chip, and it allows you to connect a SAW filter in between them. The TA1405A SAW filter appears to be produced by Golledge (datasheet here), and it has about a 3 dB insertion loss.

The Outernet L-Band LNA
The Outernet L-Band LNA
Inside the Outernet LNA
Inside the Outernet LNA

We tested the patch and LNA together with one of our V3 RTL-SDR Blog dongles, with the bias tee turned on. The LNA was connected directly to the dongle, with no coax in between. The patch antenna was angled to point towards the Inmarsat satellite. A 5 meter USB extension cord was then used to interface with a PC. The images below demonstrate the performance we were able to get.

Outernet Signal

Outernet Signal

Outernet Signal with 4x Decimation

Outernet Signal with 4x Decimation

AERO

AERO

STD-C EGC

STD-C EGC

The Outernet team writes that a SNR level of only 2 dB is needed for decoding to work on their signal. With the patch and LNA we were able to get at least 12 dB so this is more than good enough. Other signals such as AERO and STD-C EGC also came in very strongly. Even when not angled at the satellite and placed flat on a table it was able to receive the signal with about 5 dB’s of SNR.

In conclusion the patch and LNA worked very well at receiving the Outernet signal as well as AERO and STD-C EGC. We think these products are great value for money if you are interested in these L-Band signals, and they make it very easy to receive. The only minor problem with the patch antenna is that there is no stand for it, which makes it difficult to mount in a way that faces the satellite. However this issue can easily be fixed with some sellotape and your own mount.

In the future once the Outernet Rpi3 OS and decoder image is released we hope to show a demonstration and tutorial on receiving Outernet data.

Scytale-C: A New Inmarsat STD-C Decoder + Tekmanoid STD-C Decoder Updates

Over on the BitBucket code repository a new open source decoder for Inmarsat STD-C called Scytale-C has been released. The software is available for Windows, and a ready to use binary .exe file can be downloaded from the downloads section of the BitBucket repo.

Inmarsat STD-C is an L-band geosynchronous satellite signal that transmits at 1.541450 GHz. This means that the signal can be received with a simple patch antenna, LNA and RTL-SDR dongle. The satellite is geosynchronous (stationary in the sky), so no tracking is required. On the STD-C channel you'll see messages mainly for mariners at sea such as weather updates, military operational warnings, pirate sightings/reports, submarine activity, search and rescue messages and more. If you are interested we have a tutorial based on other software packages available here which also shows some STD-C message examples. The tutorial can easily be adapted for use with Scytale-C instead.

We've also seen on Twitter that Scytale-C beta tester @otti has noted that a SDR# plugin based on Scytale-C seems to be in the works.

Scytale-C Screenshot
Scytale-C Screenshot

An Important Note on the Coding Ethics of Scytale-C + Tekmanoid Decoder Updates

We feel that it is responsible to make a note on coding and licencing ethics about this software. Originally the software was illegally decompiled by 'microp11' from the closed source Tekmanoid STD-C decoder written by Alex and re-released in a different programming language with a different GUI as the 'open source' B4000Hz software. After Alex took action and micrcop11 realized what he did was wrong he took B4000Hz down. Since then microp11 notes that he has written Scytale-C fully from scratch without the closed source code knowledge. But to be unquestionably legal a full two man clean-room rewrite would probably need to be done as once knowledge of source code is acquired it can be difficult to think of a separate implementation (a somewhat related post discussing this on StackExchange).

However, Alex has noted microp11's passion, and microp11's remorse at the initial decompilation and release of B4000Hz, and has decided to take the higher road and not pursue any further DMCA complaints. Instead he has kindly decided to allow the software to exist, but with acknowledgement of Tekmanoid included. We're glad that the matter was resolved amicably, but still if you use the Scytale-C software we would urge you to still consider the free or paid version of the Tekmanoid STD-C decoder to support Alex

Recently Alex has updated his software to include a spectrum analyzer and more appealing method of displaying EGC messages. Alex writes regarding his Tekmanoid STD-C decoder:

This software [Tekmanoid STD-C Decoder] is closed source and has been since it was first released around 2009. At that time I made a choice to keep the source private but share the executable EGC app for free with the public, so that others could have some fun on the L-band!

The "pro" EGC-LES version was developed in parallel the same year but kept private, nobody even knew it existed. Although I recognized its potential financial value I didn't take "advantage" of it. Firstly because it was a personal hobby project (can't put a price on intellectual property) and second, because I didn't want to help to further expose people's private communications to the open public.

In February 2017 a raw clone of my de-compiled code was made public, to be later withdrawn with an apology. That is the moment I decided to release the PRO version as payware to the public. Many new features present in today's PRO version have been proposed by users and my aim is to satisfy everyone's wishes.

Recently another similar project was released from the same author, with lots of documents to support the code and only minute traces of the initial de-compilation. This time one could indeed claim to have built it "from scratch" - codewise at least. The fact still remains that *part* of the knowledge (not 'code' necessarily) required to put it together was obtained from this initial reverse engineering process.

Despite the negativity surrounding this case, I decided to withdraw my takedown request on the project in exchange for an acknowledgement to the original Tekmanoid decoder, as this person himself wished to include from the start anyway.

To end it with another positive note, I can only hope this newcomer will bring something new to the scene, and that we will see some interesting things!

Below is a video of the updated Tekmanoid decoder.

Update: Microp11 wrote to us after this post went out and wrote the following:

I just want to let you know that scytalec is not a re-write. It is another solution of solving the problem of decoding the Inmarsat-C. Written from scratch. Inadvertently any Inmarsat-C decoder in the 1.5GHz band will have the same the building blocks and they are now documented in detail in the bibliography published with my code. The information is hard to find. All the information is from publicly available sources only. Such that the code will be able to withstand the obstacles or remaining open source. The majority of the documentation is technical manuals, as they each in part reveal a piece of the puzzle, and collectively they contain an almost complete communication protocol. Some are books and they must be the specific revision mention within the bibliography. Moreover if any coder will read the documentation they will actually be able to write a better decoder as I found parts of it too late for a more elegant code writing. And this is the whole idea of scytalec, that anyone can do it if they put their mind to it. There is enough documentation to tackle the C-band as well. And giving enough time, I might be planning on doing that after the sdr# plugin I’m working at. Not alone, as I was and I am being helped by others to which I am grateful and their names were and will be mentioned within the code. Just so you will have an idea of how deep the documentation correctness went for this project, even if a code comment was incorrect, say I was referring to a frame as a “block” or “part” I would get an admonishing email on that. So yes, I have high reasons to stand by this code originality.

Testing the Prototype Outernet Patch Antenna with Built in RTL-SDR

A few months ago satellite data broadcasting company Outernet created a limited number of prototype receivers that combined an L-band satellite patch antenna, LNA and RTL-SDR into a signal unit. This was never produced in bulk as they found it to be too noisy having the RTL-SDR so close to the antenna, but nevertheless it still worked fairly well.

Over on YouTube max30max31 bought one of these prototype units and made a video about using it for receiving and decoding various L-band satellite signals. In the video he first shows an overview of the product and then shows it receiving and/or decoding some signals like Inmarsat STD-C, AERO and Inmarsat MFSK.

Outernet SDRx Clearance Sale $15: RTL-SDR with built in L-band LNA and Filter

Recently the Outernet project transitioned from using RTL-SDR dongles and C.H.I.P single board computers to using their Dreamcatcher board, which is an RTL-SDR and computing board all in one. In between the transition they also produced a number of ‘SDRx’ dongles. These were custom RTL-SDR dongles with a built in L-band LNA and filter. As they no longer need the SDRx they have them on clearance at their store.

The clearance price is $15 USD which is an excellent deal. Remember though, that the SDRx is limited in frequency range – it is designed for receiving L-band satellites between 1525 – 1559 MHz and the filter will cut off all other frequencies.

The Outernet SDRx on Clearance
The Outernet SDRx on Clearance

Just add a simple L-band tuned antenna to the port and you should be able to receive Inmarsat and a signal like STD-C, AERO or the Outernet signal. A suitable antenna might be a homebrew patch, helix, cooking pot antenna or even a small tuned V-dipole antenna can work for the stronger AERO signals.

We also see that the price of their L-band Outernet active ceramic patch antenna has been dropped down slightly to $25 USD. This antenna is bias tee powered and can be used with a V3 dongle or their Dreamcatcher hardware. The Dreamcatcher itself is also now reduced in price to $59 USD.

We have a review of the Dreamcatcher and active ceramic patch antenna available here.

Outernet Dreamcatcher and L-Band Active Ceramic Patch
Outernet Dreamcatcher and L-Band Active Ceramic Patch

We also now list Outernet products in our store. These are commission sales so we receive a little bit per purchase which supports the blog, and the items are shipped by Outernet within the USA.

If you were unaware, Outernet is a free L-band based satellite service that provides content such as news, weather data, APRS repeats and more. Currently you can get about 20MB of data a day. Outernet receivers are also all based around the RTL-SDR, allowing for very cheap receivers to be built

Outernet: Patch antenna now sold seperately + other products

Back in June we tested Outernet’s new Dreamcatcher which is an ARM based computing board with RTL-SDR and L-band LNA built in. The $99 USD kit also included an external active L-band patch antenna. The Dreamcatcher full kit has now been reduced to $89 USD, and the active L-band patch antenna can also now be purchased by itself for $29 USD. The active patch antenna is also compatible with the bias tee on our V3 dongles and is a good low cost option for exploring most L-band satellite signals like Outernet, Inmarsat STD-C and AERO around 1542 MHz. The filter does unfortunately cut off the higher Iridium frequencies though.

They are also selling off their older L-band SDRx RTL-SDR boards at a reduced price of $20 USD. The SDRx is a RTL-SDR PCB with a built in L-band LNA and filter, but unlike the Dreamcatcher does not have built in computing hardware. They also have a limited $25 USD edition version of their active patch antenna which includes a built in RTL-SDR. This version is a bit more noisy compared to the standard active patch, but may be an interesting experimental antenna for some.

Current Outernet Products
Current Outernet Products

Tekmanoid STD-C Decoder Updated: New Paid LES Decoder + EGC Visualization

The Tekmanoid EGC STD-C decoder was recently updated and a new commercial paid version was released. The paid version now supports the decoding of LES STD-C messages. Previously the only other decoder that we knew of which was able to decode LES messages was the www.inmarsatdecoder.com software. The inmarsatdecoder.com software costs €100, and while the price for the Tekamanoid decoder is not advertised, it is less than €100, and a bit more affordable for the average person.

Tekmanoid STD-C Decoder Receiving LES Message.
Tekmanoid STD-C Decoder Receiving LES Message.

The free versions of both decoders only decode the EGC broadcast messages which contain SafetyNET messages. These include messages like weather reports, shipping lane activity and hazards such as submarine cables and oil rig movements, pirate activity, refugee ship reports, missing ship reports, and military exercise warnings. 

The paid version can decode the other non-broadcast private LES STD-C channels. LES STD-C channels typically contain email like messages sent to and from ships. Mostly it’s company messages about the ship route plans, cargo discussions, repair/fault discussions, ship performance information and weather reports etc. Sometimes small files are also downloaded. Each Inmarsat satellite contains about 7 LES channels each run by a different telecommunications company, so one may be of interest to you.

The paid version of the Tekmanoid decoder also has a nice feature for visualizing the SafetyNET EGC messages. Every now and then an alert containing coordinates and an area is sent out. Usually it is something like a distress alert from an EPIRB or the search area for a missing vessel. The decoder generates an HTML file that displays these areas on a map, alongside the text message.

STD-C EGC Distress Alert on map
STD-C EGC Distress Alert on map

The author of the Tekamnoid software allowed us to test his new paid version for free. We ran the software using signal from an Outernet patch antenna and LNA. An RTL-SDR V3 + SDR# was used as the receiver, and the audio was piped to the Tekmanoid decoder with VB-Cable. Decoding was almost flawless on both LES and EGC STD-C channels. In a previous recent update the Tekmanoid decoder was updated for improved decoding performance, and now in our opinion it is almost or just as good as the inmarsatdecoder.com software.  

If you are interested in learning more about decoding Inmarsat STD-C we have a tutorial available here. LES channels for the Inmarsat satellite in operation over your geographic location can be found on UHF-Satcom’s website.

LES STD-C Inmarsat Channels
LES STD-C Inmarsat Channels

Remember that LES STD-C messages are not publicly broadcast, so in some countries it may not be legal to receive them. Most countries will have a law that says you can receive and decode the data, but you may not act upon or use to your advantage any information from the messages.

—–Hz: A New STD-C Inmarsat Decoder

UPDATE: Unfortunately we have been informed that the code base of this software was illegally decompiled and reused in an almost unchanged way from an already available closed source decoder. This means the program itself is illegal and totally unethical.

Please respect the original developers hard work and do not download this software.

A new STD-C Inmarsat decoder called —-Hz has recently been released. The decoder is Windows based and simply listens to the demodulated Inmarsat STD-C audio from a program such as SDR#. This means that it is compatible with the RTL-SDR, and any other SDR that can receive Inmarsat. 

We gave the software a brief test and it ran very well, and managed to decode several SafeteNET messages without issue, maintaining a good lock most of the time. The author writes that he plans to improve on the software in the future by creating a web service based version of the software.

Currently there are two other Inmarsat decoders available. One is called InmarsatDecoder and the other is the Tekmanoid decoder. The InmarsatDecoder is generally regarded as the best, but the Tekmanoid decoder was recently updated for improved performance. The new software appears to be about the same as the Tekmanoid decoder.

Inmarsat STD-C messages are broadcast from geostationary satellites in the L-band at around 1.5 Ghz. They send mostly marine based messages such as the following quoted from the ——Hz website:

  • Safety: high seas, tropical storm warnings, ice accretion…
  • Shipping activity: moving oil rigs, submarine cable deployment and repairs…
  • Distress reports: MOB, ships lost at sea, migrant ship reports…
  • Military exercises (firing practice, no fly zones…)
  • Pirate at sea reports…

If you are interested in learning how to decode STD-C we also have a tutorial available here

The b4000Hz Inmarsat STD-C Decoder
The ——Hz Inmarsat STD-C Decoder

Review: Outernet LNA and Patch Antenna

Recently we posted news that Outernet had released their 1.5 GHz LNA, Patch Antenna and E4000 Elonics RTL-SDR + E4000/LNA Bundle. When used together, the products can be used to receive the Outernet L-band satellite signal, as well as other decodable L-band satellite signals like AERO and Inmarsat STD-C EGC. Outernet is a new satellite service that aims to be a free “library in the sky”. They continuously broadcast services such as news, weather, videos and other files from satellites.

EDIT: For international buyers the Outernet store has now started selling these products at http://store.outernet.is.

A few days ago we received the LNA and patch antenna for review. The patch antenna is similar to the one we received a while ago when writing our STD-C EGC tutorial, although this one is now slightly larger. It is roughly 12 x 12 cm in size, 100g heavy and comes with about 13 cm of high quality RG316 coax cable with a right angled SMA male connector on the end. The coax cable is clamped on the back for effective strain relief.

The Outernet patch antenna and LNA
The Outernet patch antenna and LNA

The LNA is manufactured by NooElec for Outernet. It amplifies with 34 dB gain from 1525 – 1559 MHz, with its center frequency at 1542 MHz. It must be powered via a 3 – 5.5V bias tee and draws 25 mA. The package consists of a 5 x 2.5 cm PCB board with one female and one male SMA connector. The components are protected by a shielding can. Inside the shielding can we see a MAX12000 LNA chip along with a TA1405A SAW filter. The MAX12000 (datasheet here) is an LNA designed for GPS applications and has a NF of 1 dB. It has a design where there are two amplifiers embedded within the chip, and it allows you to connect a SAW filter in between them. The TA1405A SAW filter appears to be produced by Golledge (datasheet here), and it has about a 3 dB insertion loss.

The Outernet L-Band LNA
The Outernet L-Band LNA
Inside the Outernet LNA
Inside the Outernet LNA

We tested the patch and LNA together with one of our V3 RTL-SDR Blog dongles, with the bias tee turned on. The LNA was connected directly to the dongle, with no coax in between. The patch antenna was angled to point towards the Inmarsat satellite. A 5 meter USB extension cord was then used to interface with a PC. The images below demonstrate the performance we were able to get.

Outernet Signal

Outernet Signal

Outernet Signal with 4x Decimation

Outernet Signal with 4x Decimation

AERO

AERO

STD-C EGC

STD-C EGC

The Outernet team writes that a SNR level of only 2 dB is needed for decoding to work on their signal. With the patch and LNA we were able to get at least 12 dB so this is more than good enough. Other signals such as AERO and STD-C EGC also came in very strongly. Even when not angled at the satellite and placed flat on a table it was able to receive the signal with about 5 dB’s of SNR.

In conclusion the patch and LNA worked very well at receiving the Outernet signal as well as AERO and STD-C EGC. We think these products are great value for money if you are interested in these L-Band signals, and they make it very easy to receive. The only minor problem with the patch antenna is that there is no stand for it, which makes it difficult to mount in a way that faces the satellite. However this issue can easily be fixed with some sellotape and your own mount.

In the future once the Outernet Rpi3 OS and decoder image is released we hope to show a demonstration and tutorial on receiving Outernet data.

Comparing Home Made Inmarsat Antennas

Over on his blog “coolsdrstuff”, the author has uploaded a new post showing his comparisons of various home made Inmarsat antennas. In his post he tests a tin can helix antenna, a 10-turn helix antenna, and a LHCP helix feed on a 81cm DirecTV dish.

His results show that the dish outperforms the helix antennas by a significant amount, but only once he took it outdoors. The 10-turn helix antenna also worked better than the tin can helix, although he found that it required very accurate pointing.

Inmarsat are geostaionary satellites that transmit signals on L-band at around 1.5 GHz. They transmit signals that can be decoded with an RTL-SDR, such as STD-C EGC (weather, messaging and safety messages for boats), as well as AERO (the satellite version of ACARS for aircraft).

Good Inmarsat reception with the dish.
Good Inmarsat reception with the dish.