Tagged: inmarsat

L-Band Patch Antenna Set Preorder Sale Ending Soon – Shipping Begins Next Week

Just a heads up that the preorder sale on our new L-Band Patch antenna set will be ending October 21 as we are almost ready to ship the units out. After the preorder sale ends the pricing will rise from $34.95 to $39.95 USD.

PREORDER PRICING: 34.95 USD incl. free shipping.
PREORDER ENDS OCTOBER 21!

Please see our store to preorder the unit.

Preorder has now ended and shipping will begin shortly. Thank you!

The product is a ready to use active patch antenna set that is designed to receive L-Band satellites such as Inmarsat, Iridium and GPS. It is enclosed in a waterproof plastic case, and can easily be mounted to a window using the provided suction cup and 2M coax extension cable. It can also be mounted to almost anything else using the included flexible tripod legs, or if you prefer, use the standard 1/4" camera screw hole to connect it to any mount that you like.

The antenna is powered via 3.3V - 5V bias tee power, so any bias tee capable SDR such as our RTL-SDR Blog V3 can be used to power it.

In terms of performance see our previous post that announced the product for sample screenshots and reception tips.

The RTL-SDR Blog L-Band Satellite Patch Antenna Set
The RTL-SDR Blog L-Band Satellite Patch Antenna Set
Inmarsat Reception
Iridium Reception

SignalsEverywhere: Testing out NooElecs PCB L-Band Patch Antenna

Over on his YouTube channel Corrosive from the SignalsEverywhere YouTube channel has uploaded a video where he tests out the new US$29.95 NooElec PCB patch antenna for receiving L-band satellite signals. In the video he shows how it can be combined with one of their SAWBird L-band low noise amplifiers in order to receive L-band satellite signals such as Inmarsat STD-C and AERO.

We note that our own RTL-SDR Blog Active L-band patch antenna will be ready to ship out before the end of this month, and while waiting for it we are currently having a preorder sale for US$34.95 including free shipping over on our store. For US$34.95 our patch antenna is fully contained in a waterproof enclosure, includes an LNA built in, and comes with several mounting options, so we believe that it is really a great deal. The patch design is based on the Outernet ceramic patch that was compared against the NooElec PCB patch shown in Corrosives video, so performance will be very similar.

Nooelec NEW Inmarsat Patch Antenna with Airspy SDR

PREORDER SALE: Active L-Band 1525-1637 Inmarsat to Iridium Patch Antenna Set For $34.95

Over the last several months we've been working on a versatile active L-band patch antenna that can cover Inmarsat to Iridium satellite frequencies. That antenna is now almost ready, and should be able to ship out from our Chinese storage warehouse by week 1 or 2 of October NOTE: Due to an unfortunate Typhoon near the factory in Taiwan, and the Chinese National Week long holidays and Taiwan National day we are expecting them to ship out in week 3 or 4 of October now. Apologies for the delays. No other components like filters or amplifiers are required to be able to use this antenna, as it is an all in one system.

The expected price will be US$39.95, but right now we're releasing it for a discounted PREORDER price of US$34.95 incl. free shipping.

Please see our store to preorder the unit.

Preorder sale has ended. Please see our store to order.

Your preorder will ship out as soon as it's stocked in the warehouse in China. If you prefer to wait we'll also have this product on Amazon (at retail $39.95) about 2-3 weeks after it is stocked in our Chinese warehouse.

The antenna is based on the active (low noise amplified with built in filter) ceramic patch design that was used by Othernet (aka Outernet), back when they had their L-band service active. We've asked them to modify the antenna to cover a wider range of frequencies, and include an enclosure that allows for easier mounting.

The antenna is 3.3 - 5V bias tee powered, so you will need a bias tee capable RTL-SDR like our RTL-SDR Blog V3, or a 5V external bias tee. It draws about 20-30mA of current, so it is compatible with other SDRs like the SDRplay, HackRF and Airspy too.

With this antenna we've paid close attention to the mounting solutions. One major difficulty with these patch antennas is finding a convenient place to mount them. The patch is designed with a built in 1/4" camera screw hole, so any standard camera mount can be used. In the kit we're including a window suction cup, a flexible tripod and 2 meters of RG174 cabling to help with mounting. Your own longer coax cabling can be used, however we'd recommend using lower loss cabling like RG59/58 or RG6 for anything longer than 3 meters.

The patch is also fully enclosed in an IP67 weather proof plastic case, so it can be kept mounted outdoors in the rain.

The RTL-SDR Blog L-Band Satellite Patch Antenna Set
The RTL-SDR Blog L-Band Satellite Patch Antenna Set
Ways to mount the patch antenna
Ways to mount the patch antenna

Performance

With the patch receiving AERO, STD-C and GPS should be a breeze. Simply point up at the sky, or towards the Inmarsat antenna, apply bias tee power and receive. Below are some sample screenshots showing reception.

Inmarsat Reception
Inmarsat Reception
Iridium Reception

Reception Tips

  • The patch is designed to be used with a 1m+ length of coax cable. It may perform poorly if the RTL-SDR is placed right at the antenna due to interference.
     
  • If receiving Inmarsat, the patch antenna should ideally be angled to face the satellite.
    • Rotate the patch until the signal strength is maximized. Rotating the patch optimizes the polarization of the antenna for the satellite and your location. NOTE: Using the wrong orientation could result in 20 dB attenuation, so please do experiment with the rotation.
    • You can also use the patch on a flat surface for Inmarsat (and rotate for best reception), but signal strength may be a little reduced. Depending on your location and the satellites elevation it should still be sufficient for decoding.
       
  • For receiving Iridium and GPS signals you can use the antenna flat, pointing straight up towards the sky. Try to get it seeing a clear view of the sky horizon to horizon to maximize the satellites that it can see.
     
  • If you happen to have a very marginal signal, you can clamp on a flat sheet of metal behind the patch antenna for improved performance.
     
  • AERO C-Channel: C-Channel transmissions are at 1647-1652 MHz which are outside of the advertised range of this antenna. However, the filter cut off is not that sharp, and you may be able to get results, although we cannot guarantee this. (If you want to test this for us and can demonstrate that you can receive C-Channel already, please contact us at [email protected] for a sample)

  • If you want to mount this on a car roof, you can use a standard magmount camera adapter.

What Can you do with this antenna?

Inmarsat STD-C EGC Decoding

AERO Satellite ACARS Decoding

Iridium Decoding

GPS Experiments

Testing a PCB Patch Antenna and Radiosonde QFH Antenna for Inmarsat and Iridium Reception

Over on his YouTube channel Tech Minds has been testing some antennas for Inmarsat and Iridium L-Band satellite reception. Inmarsat is a satellite service that runs on geostationary satellites, and one can be received from almost anywhere in the world. There are various services, but the ones that are easily decodable are STD-C EGC and AERO. EGC contains text information search and rescue (SAR) and coast guard messages as well as news, weather and incident reports, and AERO is a form of satellite ACARS, and typically contains short messages from aircraft.

In the first video Tech Minds tests what appears to be an as of yet unreleased prototype PCB patch antenna being designed by NooElec. The PCB patch antenna is combined with a SAWBird Inmarsat LNA and an RTL-SDR. With it he's able to receive STD-C and AERO signals.

In the second video Tech Minds tests an L-Band QFH antenna salvaged from a Vaisala weather balloon radiosonde. The QFH is designed for GPS frequencies, but can potentially be used at the slightly higher Inmarsat and Iridium frequencies. Tech Minds combines the QFH antenna with a SAWBird Inmarsat LNA, but unfortunately finds that reception is too weak for any AERO decoding to be possible. However, when used on the higher Iridium frequencies the antenna works well, and he's able to decode packets with Iridium Toolkit.

New Inmarsat Antenna from NooElec

Testing A QFH Antenna For Inmarsat And Iridium

RTL-SDR Blog L-Band Patch Antenna Preview

We note that over the last several months we have been working on our own L-band patch antenna that will cover Inmarsat, GPS and Iridium frequencies all in one. We expect manufacturing to be completed near the end of the month, or early next month.

The antenna is a ceramic patch, and will come in a waterproof enclosure. It will be possible to easily mount the antenna on a window or elsewhere using the standard suction cup and bendy legs tripod included with our dipole kits. Target price is US$39.95 including the suction cup, tripod, 2M coax and shipping, but we may have it initially on sale for a lower price.

This is cheaper than buying an Inmarsat & Iridium LNA, but a bit more than the SDR-Kits patches that they brought out a few weeks ago. Although performance of our patch is much better. Keep an eye out for the initial information post coming in the next few days.

RTL-SDR Blog L-Band Patch Preview (RTL-SDR for Scale)
RTL-SDR Blog L-Band Patch Preview (RTL-SDR for Scale)

Mike Tests out L-Band STD-C and AERO with a Low Cost Modified GPS Antenna

SDR-Kits.net have begun selling low cost GPS antennas that are modified to receive the Inmarsat satellite frequencies between 1535 MHz to 1550 MHz. They also have a version for Iridium satellites that receives 1610 MHz to 1630 MHz. The antennas are powered by a 3-5V bias tee, so they should work fine with SDRplay, Airspy and RTL-SDR Blog V3 units.

Mike Ladd from SDRplay has recently sent us a guide to receiving AERO and STD-C messages on L-band with the SDR-Kits antenna and an SDRPlay unit running SDRUno (Megaupload link).

AERO messages are a form of satellite ACARS, and typically contain short messages from aircraft. It is also possible to receive AERO audio calls. STD-C aka FleetNET and SafetyNET is a marine service that broadcasts messages that typically contain text information such as search and rescue (SAR) and coast guard messages as well as news, weather and incident reports. Some private messages are also seen. To decode AERO Mike uses JAERO, and for STD-C he uses the Tekmanoid STD-C decoder.

Mike has also created a very handy bank of frequencies for the SDRUno frequency manager which can be downloaded from here.

We note that if you're interested in waiting, at the end of September we will have an L-band patch antenna set available too. Our antenna will work from 1525 up to 1637 MHz. Prototypes have shown have shown good Inmarsat, Iridium and GPS reception. More details coming next month when manufacturing gets closer to finishing up.

Screenshot of the Tekmanoid Decoder from Mikes Tutorial
Screenshot of the Tekmanoid Decoder from Mikes Tutorial

SignalsEverywhere: Decoding Inmarsat EGC and AERO ACARS

On his latest video Corrosive from the SignalsEverywhere YouTube channel discusses Inmarsat LES EGC and AERO ACARS decoding. Inmarsat is a satellite provider that has multiple geosynchronous satellites that can be received from almost anywhere in the world at around 1.5 GHz with an RTL-SDR and appropriate antenna + LNA. Inmarsat EGC and AERO are two channels on Inmarsat satellites that can easily be decoded.

The Enhanced Group Call (EGC) messages typically contain text information such as search and rescue (SAR) and coast guard messages as well as news, weather and incident reports. AERO messages on the other hand are a form of satellite ACARS, and typically contain short messages from aircraft. More interestingly with a bit of work compiling audio decoders, it is also possible to listen in to AERO C-Channel conversations, which is an emergency phone call service available on some aircraft.

In his video Corrosive gives an overview and demonstration of EGC and AERO reception.

Inmarsat LES EGC and AERO ACARS Decoding

Creating an Inmarsat STC-C EGC Live Stream with an RTL-SDR, Raspberry Pi and OpenWebRX

Thanks to Zoltan (aka Veryokay on YouTube) for submitting information about his Inmarsat STD-C EGC live stream setup. His setup allows him to access the Inmarsat STD-C signal from anywhere in the world over the internet, thanks to the use of an OpenWebRX server. Inmarsat STD-C is a geostationary satellite service that provides information for search and rescue, as well as news, weather and incident reports for mariners. We have a tutorial from a few years ago which shows some example messages. OpenWebRX is an efficient SDR streaming server platform that allows you to access RTL-SDR's and other SDRs from anywhere in the world via an internet connection.

In his setup Zoltan uses a Raspberry Pi 3, RTL-SDR Blog V3, L-band LNA and L-band antenna for receiving and processing the signal. Power is provided via a Power over Ethernet (PoE) adapter, and the whole thing is placed outside, in a weatherproof plastic lunchbox.

The video shows the hardware, and then goes on to describe the software setup, along with a demonstration of the OpenWebRX stream. More information as well as the link to his publicly accessible OpenWebRX Inamrsat STD-C stream can be found on his blog post.

INMARSAT STD-C EGC live streaming

SDR# Inmarsat Decoder Plugin Now Available

Microp11, the programmer of Scytale-C a standalone Inmarsat decoder has just released a new Inmarsat decoder SDR# plugin. The plugin is currently in the "pre-alpha" stages, so is still missing some functionality and may be buggy. However, it does appear to be functional at this point in time. It can be used with RTL-SDRs, and any other SDR# compatible SDR including units running on remote SpyServers. Microp11 writes:

  • I ran it with SDR# version v1.0.0.1761.
  • If it crashes you SDR# I apologize in advance.
  • The auto-tracking (default on) will alter your SDR# frequency and follow the signal’s CF. When the SNR is very low, please disable it and manually tune the SDR# to try to get the CF as close to 2000 as possible.The demodulator still has plenty ideas of its own.
  • Use USB mode with 4000 Hz bandwidth.
  • For now the interface is missing the usual scatter plots.
  • UDP Address and UDP Port are for sending the decoded frames to the Scytale-C UI.
  • Offset and CF are the difference from zero error and the CF frequency of the demodulated BPSK signal.
  • Tx and SYM are the transmitted over UDP frames and SYM is showing the number of demodulated symbols.
  • A bunch of libraries are attached as extra files. Please be gentle and accept the package as it. Will clean-up in the future.
  • Use in conjunction with the Scytale-C UI from the archive: “x64-UI1.6-Decoder1.4.zip” (link below)
  • The magic line is included in the archive: “SDRSharp.ScytaleC-1.0-alpha.zip”

The files can be downloaded from https://bitbucket.org/scytalec/scytalec/downloads.

SDRSharp Scytale-C Plugin
SDRSharp Scytale-C Plugin