Tagged: GOES

A Step by Step Tutorial to Receiving GOES-16 Images with an RTL-SDR, Raspberry Pi and Goestools

Aleksey Smolenchuk (lxe) has recently uploaded a step-by-step guide to setting up a GOES weather satellite receiver with an RTL-SDR dongle, Raspberry Pi and the goestools software.  GOES 15/16/17 are geosynchronous weather satellites that beam high resolution weather  images and data. In particular they send beautiful 'full disk' images which show one side of the entire earth. Compared to the more familiar and easier to receive low earth orbit satellites such as NOAA APT and Meteor M2 LRPT, the geosynchronous GOES satellites require slightly more effort as you need to set up a dish antenna, use a special LNA, and install Linux software.

Aleksey's tutorial first shows where to purchase the required hardware and notes that the total cost of the system is around $185. Next he goes on to show the hardware connection order, and then how to install and configure the goestools decoding software onto a Raspberry Pi.

Aleksey's RTL-SDR Based GOES Receiver setup
Aleksey's RTL-SDR Based GOES Receiver setup

YouTube Video Demonstrates GOES Weather Satellite Reception

On The Thought Emporium YouTube channel a new video has been uploaded showing the full disk images of the earth that they've been able to receive from GOES geosynchronous weather satellites. Over the past couple of years GOES satellite reception has become much easier for hobbyists to achieve with the release of the NooElec SAWbird LNA+Filter, information on how to use a cheap 2.4 GHz WiFi grid antenna for reception and the release of free open source decoder software. It was also shown that an RTL-SDR dongle is sufficient for receiving these images as well. With all these new developments it is now possible to build a GOES receiving station for under $100.

The Thought Emporium video blurb reads:

In the fall of 2016 I saw my first rocket launch and little did I know that the satellite on that rocket would come to shape and fill my thoughts for many years. We're no strangers to getting data out of space on this channel, but GOES-16 is special, and not just because I was there when it left earth. Unlike the satellites we looked at in the past, GOES is in geostationary orbit and has an amazing suite of cameras and sensors on board. While it's a bit harder to receive data from GOES the extra effort is absolutely worth it, especially because it can see then entire globe all at once and send out those images in stunning high resolution. And it even comes with the added bonus of rebroadcast data from other satellites giving us a view of the opposite side of the planet as well.

In this video we go through the hardware and software needed to receive these gorgeous images and what is contained in the signals we receive.

How to Receive Beautiful Images of the Earth Directly From Space | GOES-15,16,17 and Himawari 8 HRIT

NooElec SAWBird: An LNA + Filter for GOES Weather Satellite Reception Now Available

NooElec has just released their new "SAWbird" GOES LNA for sale. This is an LNA and filter combination designed to help receive GOES weather satellite images. On the PCB is a 1688 MHz SAW filter and a low noise amplifier. It can be powered with 3V - 5.5V connected directly or via bias tee. The SAWbird is currently available on Amazon and their store for US$34.95. They also have a version for Inmarsat and Iridium, so make sure you choose the correct one.

GOES 15/16/17 are geosynchronous weather satellites that beam high resolution weather  images and data. In particular they send beautiful 'full disk' images which show one side of the entire earth. As GOES satellites are in a geosynchronous orbit, the satellite is in the same position in the sky all the time, so no tracking hardware is required and images can be constantly pulled down throughout the day without having to wait for a satellite to pass over. 

However, compared to the more familiar and easier to receive low earth orbit satellites such as NOAA APT and Meteor M2 LRPT, geosynchronous satellites like GOES are quite a bit further away, and transmit at 1.7 GHz. So to receive the signal you'll need a dish antenna that you can accurately point, a good low noise figure LNA and possibly a filter. So setting up a receiver is a bit more difficult when compared to receivers for NOAA and Meteor satellites. The SAWbird should help however, by providing a ready to use LNA+Filter combination.

Over the past few months several testers have already received engineering samples of the SAWbird and have been successful at receiving GOES images. From the results of several experimenters, it appears to be possible to use a cheap 2.4 GHz WiFi grid antenna with some minor modifications as a GOES satellite antenna. Get one with at least a one meter long width and bend the feed as described here or here to tune reception for the 1.7 GHz GOES frequency. Pieter Noordhuis has also shown that it's possible to use an RTL-SDR to receive GOES images, so an entire GOES system can be built on a budget.

NooElec SAWbird LNA + Filter for GOES reception.
NooElec SAWbird LNA + Filter for GOES reception.
GOES Full Disk Image of the Earth
GOES Full Disk Image of the Earth

Receiving GOES Weather Satellite HRIT with an SDRplay and 2.4 GHz WiFi Grid Antenna

Over on the SDRplay forums member RSP2user has posted a new tutorial, this time showing how to receive weather satellite images from GOES satellites with an RSP2 and cheap 2.4 GHz WiFi grid antenna

GOES 15/16/17 are geosynchronous weather satellites that beam back high resolution weather  images and data. In particular they send beautiful high resolution 'full disk' images which show one side of the entire earth. As the satellites are in geosynchronous orbit, they are quite a bit further away from the earth. So compared to the more easily receivable low earth orbit satellites such as the NOAA APT and Meteor M2 LRPT satellites, a dish antenna, good LNA and possibly a filter is required to receive them. However fortunately, as they are in a geosynchronous orbit, the satellite is in the same position in the sky all the time, so no tracking hardware is required.

In the tutorial RSP2user notes that he's been using a $16 2.4 GHz WiFi grid dish antenna and the NooElec SAWbird LNA. In the past we've also seen GOES reception from Pieter Noordhuis who used a 1.9 GHz grid antenna from L-Com which seems to be a better match to the 1.7 GHz GOES frequency. However, 2.4 GHz WiFi grid antennas are much more common and therefore much cheaper. In the past there has been debate on whether or not these cheaper WiFi antennas would be good enough for GOES, so it's good to see that the cheaper option is confirmed to work, at least for the satellite elevations found in the RSP2user's part of the USA.

The SAWBird is a 1.7 GHz LNA which is required to improve SNR by reducing system noise figure, and to filter any interfering out of band signals. The SAWbird is currently not available for public sale, but NooElec have noted that it is due to be released soon. RSP2user also notes that the polarization of the dish is important, so the dish may need to be rotated, and also that flipping the secondary reflector significantly increases the gain at 1.69 GHz.

For software the XRIT demodulator from USA-Satcom for a small fee is used together with the SDRplay RSP2. As seen by Pieter Noordhuis' results, it's also possible to receive these signals with an RTL-SDR and Pieters free software. So it may be possible to reduce the costs of a GOES reception system by using an RTL-SDR, SAWBird and 2.4 GHZ WiFi grid antenna. With those components the total cost would be well under $100.

As a bonus, in later posts on his forum thread, RSP2user shows that the system can also be used to receive HRPT images from the low earth orbit NOAA 19 satellite by hand tracking the antenna as the satellite passes over.

RSP2users GOES Receiver: SDRplay, SAWBird LNA, 2.4 GHz WiFi Grid Antenna
RSP2users GOES Receiver: SDRplay, SAWBird LNA, 2.4 GHz WiFi Grid Antenna

Building A Giant $200 3D Corner Reflector Antenna for GOES, Moon Bounce and Pulsar Detection

A corner reflector antenna is basically a monopole antenna with a metallic 'corner' reflector placed behind it. The reflector helps the monopole collect signals over a wider aperture resulting in signals coming in stronger from the direction that the corner is pointing at. In past posts we've seen a homemade tinfoil corner reflector used to improve reception of the generic stock RTL-SDR monopole antenna, and a larger one was used in a radio astronomy experiment to detect a pulsar with an RTL-SDR.

Recently The Thought Emporium YouTube channel has uploaded a video showing how to build a large 2 meter 3D corner reflector out of readily available metal conduit pipes and chicken wire. While the antenna has not been tested yet, they hope to be able to use it to receive weather satellite images from GOES-16, to receive moon bounce signals, to map the Hydrogen line and to detect pulsars. 

Building a Giant 2m Corner Reflector Antenna For Less than $200 (For Goes-16, Pulsars and More!)

Building A Low Cost GOES Weather Satellite Receiver with an RTL-SDR

Over on Twitter and his github.io page, Pieter Noordhuis (@pnoordhuis) has shared details about his low cost RTL-SDR based GOES satellite receiving setup. GOES 15/16/17 are geosynchronous weather satellites that beam back high resolution weather images and data. In particular they send beautiful high resolution 'full disk' images which show one side of the entire earth. As the satellites are in geosynchronous orbit, they are quite a bit further away from the earth. So compared to the more easily receivable low earth orbit satellites such as the NOAA APT and Meteor M2 LRPT satellites, a dish antenna, good LNA and possibly a filter is required to receive them. However fortunately, as they are in a geosynchronous orbit, the satellite is in the same position in the sky all the time, so no tracking hardware is required.

In the past we've seen people receive these images with higher end SDRs like the Airspy and SDRplay. However, Pieter has shown that it is possible to receive these images on a budget. He uses an RTL-SDR, a 1.9 GHz grid dish antenna from L-Com, a Raspberry Pi 2, the NooElec 'SAWBird' LNA, and an additional SPF5189Z based LNA. The SAWBird is a yet to be released product from NooElec. It is similar to their 1.5 GHz Inmarsat LNA, but with a different SAW filter designed for 1.7 GHz GOES satellites. The total cost of all required parts should be less than US $200 (excluding any shipping costs).

Pieter also notes that he uses the stock 1.9 GHz feed on the L-com antenna, and that it appears to work fine for the 1.7 GHz GOES satellite frequency. With this dish he is able to receive all three GOES satellites at his location with the lowest being at 25 degrees elevation. If the elevation is lower at your location he mentions that a larger dish may be required. It may be possible to extend the 1.9 GHz L-Band dish for better reception with panels from a second cheaper 2.4 GHz grid dish, and this is what @scott23192 did in his setup.

For software Pieter uses the open source goestools software that Pieter himself developed. The software is capable of running on the Raspberry Pi 2 and demodulating and decoding the signal, and then fully assembling the decoded signal into files and images.

Pieters GOES RTL-SDR Receiving Setup
Pieters Low Cost GOES RTL-SDR Receiving Setup

XRIT Decoder for GOES Satellites: Supports Airspy R2/Mini and SDRplay RSP2

Over on his blog USA-Satcom has released his XRIT (LRIT/HRIT) decoder for GOES satellites. The software requires a licence and costs $100 USD. GOES-13 (East), GOES-15 (West) and the new GOES-16 are geosynchronous orbiting satellites that broadcast very nice high resolution weather images of the entire visible disk of the earth. The transmit their LRIT/HRIT signals at about 1.7 GHz at fairly weak power, which means that a good LNA and dish set up is critical to be able to receive them. A dish size of about 1 meter, or an equivalent grid or Yagi is recommended as the lowest starting point.

GOES Full Disk Image of the Earth
GOES Full Disk Image of the Earth

USA-Satcom’s decoder is Windows based and comes with a nice GUI. Some portions of the code are based on the Open Satellite Project created by Lucas Teske. It currently supports the Airspy R2/Mini and the SDRplay RSP2 software defined radios.

The software is not free, it costs $100 USD for the licence. To help curb illegal distribution of his software which has been rampant in the past, USA-Satcom also requests that you show some proof of a working setup which is capable of receiving the GOES signal before inquiring about the software.

If you are also interested, USA-Satcom did an interesting talk at Cyberspectrum a few months ago, and he has also recently uploaded his slides.

Screenshot of USA-Satcoms GOES XRIT decoder.
Screenshot of USA-Satcoms GOES XRIT decoder.

Comparing Two LNA’s for HRIT/LRIT (GOES) Reception

Over on his blog Lucas Teske has been comparing the LNA4ALL and an SPF5189 LNA from eBay on HRIT/LRIT reception from GOES satellites. SPF5189 LNA’s can be found on eBay for less than $8 USD, with free shipping from China, whereas the LNA4ALL costs 27 Euros shipped from Croatia. GOES is a geosynchronous orbit weather satellite which requires a satellite dish or other high gain antenna to receive. It downlinks at about 1.7 GHz, which means that a high quality LNA with low noise figure and good PCB design is needed for reception.

In his post Lucas mentions how he saw a review on eBay stating that the SPF5189 did not work at L-band. However, he found that odd as all of his SPF5189 LNA’s seemed to work just fine with L-band reception. So he did a benchmark comparing the SPF5189 to the PSA5043+ based LNA4ALL which is known to work well on L-band.

From his comparisons he found that the SPF5189 does indeed work well on L-band, and is comparable to the LNA4ALL. He concludes that the reviewer must have received a bad unit, or didn’t know what he was doing.

Lucas also makes an important note regarding the PCB design of these LNA’s. Even though the SPF5189 and PSA5043 chips have similar specs, with LNA’s the design of the PCB is crucial, as a poor design can significantly degrade performance. With the LNA4ALL you can be sure that the design is good, although the SPF5189 LNA’s currently on eBay look to be designed okay as well. Though with some eBay sellers there is no guarantee that you will receive a good board. We note that we have seen some really poor designs for PSA5043 LNA’s out there as well.

The eBay SPF5189 LNA vs the LNA4ALL from 9A4QV
The eBay SPF5189 LNA vs the LNA4ALL from 9A4QV