Category: Radio Astronomy

Recent Talks from the Society of Amateur Radio Astronomers 2023 Conference

Over on their YouTube channel there have been numerous talks uploaded over the past few months from the 2023 Society of Amateur Radio Astronomers (SARA) conference. Some of these talks are quite useful for beginner radio astronomers who are getting started with small dishes and software defined radios like the RTL-SDR.

One talk by Alex Pettit describes how to build a radio telescope from a an umbrella and some "Faraday fabric" which is copper cloth. The results show more than adequate performance for the cost, making this an affordable and easy entry to radio astronomy.

Alex Pettit - Umbrella Antennas

Another video presented by Dr. Wolfgang describes building small to medium sized radio telescopes. He explains how small radio telescopes less than 3 meters in size can work well for receiving the 21cm Hydrogen line, and how SDRs are the best choice of receiver for them. Many examples of small dish installations are shown.

Dr. Wolfgang Herrmann: Building Small/Medium Size Radio Telescopes

TechMinds: Detecting Meteors With Software Defined Radio

In his latest video Matt from the TechMinds YouTube channel has shown how it's possible to detect the RF echoes of meteors falling in the earths atmosphere which a software defined radio.

The concept is relatively straightforward. Meteors falling in the atmosphere generate an RF reflective ionized trail, which is highly reflective to RF. In the UK where Matt lives, the Sherwood Observatory of the Mansfield and Sutton Astronomical Society (MSAS) have set up a meteor detection beacon "GB3MBA" which transmits an 80W CW signal at 50.408 MHz.

When tuned to this frequency with an SDRplay RSPdx SDR, Matt shows how the shifted reflections of meteors can be seen as blips around the beacon's carrier frequency. What is also seen are reflections from aircraft which show up as longer doppler shifted lines. Matt notes that if you live within 200km of the beacon a simple dipole antenna is sufficient, however any further might require an antenna system with more gain like a Moxon or Yagi.

We note that in Europe a similar beacon called the GRAVES space radar in France which operates at 143.050 MHz can be used.

Detecting Meteors With Software Defined Radio

Passive Radar Sensing via Ambient Radio Noise from the Sun and Jupiter

Recently Dr. Sean Peters from the Naval Postgraduate School, in Monterey, CA presented an interesting webinar titled "Leveraging Ambient Radio Noise for Passive Radar Sensing of the Terrestrial and Space Environment".

In passive radar, the radio source is typically an existing powerful terrestrial broadcast station, such as FM, DAB, TV or cellular. However, Dr. Peters makes use of more ambient radio noise sources, such as sun noise, and even noise from Jupiter.

By using Sun noise as the source and an Ettus USRP SDR as the receiver, he's been able to measure the ice sheet thickness at the Store glacier in Greenland. Furthermore he's also been able to utilize sun radio noise and radio noise from Jupiter for passive synthetic aperture radar, with the application being planetary remote sensing.

Traditional active radars transmit a powerful electromagnetic pulse and record the echo’s delay time and power to measure target properties of interest, such as range, velocity, and reflectivity. Such observations are critical for investigating current and evolving conditions in extreme environments (i.e., polar regions and planetary missions); however, existing radar systems are resource-intensive in terms of cost, power, mass, and spectrum usage when continuously monitoring large areas of interest. I address this challenge by presenting a novel implementation of passive radar that leverages ambient radio noise sources (instead of transmitting a powerful radio signal) as a low-resource approach for echo detection, ranging, and imaging. Starting from theory, simulation, and lab-bench testing, I first present the results of our passive radar sounding demonstration using the Sun to measure ice sheet thickness at Store Glacier, Greenland. I then project the passive radar’s performance and ability to provide valuable glaciological observations (such as melt rates, bed reflectivity changes, and englacial water storage) across Greenland and Antarctica.

In the second part of my presentation, I then extend this technique to enable passive synthetic aperture radar (SAR) imaging using radio-astronomical noise sources (e.g., the Sun and Jupiter’s radio emissions). I conclude by highlighting applications of this technique to planetary remote sensing, such as (1) using Jupiter’s HF radio emissions alongside an active VHF radar to characterize and correct for Europa’s ionospheric dispersion during a flyby mission and (2) using the Mars Reconnaissance Orbiter (MRO) Shallow Radar (SHARAD) to analyze solar radio burst candidates for Martian passive sounding.

Leveraging Ambient Radio Noise for Passive Radar Sensing of the Terrestrial and Space Environment

Video Demonstrating Hydrogen Line Detection with an RTL-SDR and WiFi Dish

Back in January 2020 we posted a tutorial showing how it's possible to detect and measure the galactic Hydrogen line using a simple 2.4 GHz WiFi dish, RTL-SDR Blog V3 and a filtered LNA. Since then many people have used the same setup with great results.

Over on YouTube user stoppi who is one such person who is using the same steps from our tutorial, and he has uploaded a video showing his setup and results. If you're thinking of getting started with Hydrogen Line reception, his video slide show tutorial would be a good complimentary overview to go along with our text tutorial.

Detection of the galactic hydrogen - the 21 cm radiation - Wasserstoffstrahlung der Milchstrasse

RSGB 2022: The UK Meteor Beacon Project

During last years Radio Society of Great Britain (RSGB) 2022 convention, Brian Coleman (G4NNS) presented a talk about the UK Meteor Beacon Project. The idea behind the project is to use a transmit beacon and a network of user-run receivers to help detect and study meteors. The talk has recently been uploaded to YouTube.

Radio signals can reflect off the meteor and the ionized trail left behind when it enters the atmosphere. This trail is highly RF reflective, so it can allow distant radio stations to be briefly received.

In the talk Brian explains the meteor detection, and explains the project in more detail.

The UK meteor beacon project is a collaborative project between the amateur radio and radio astronomy communities to collect data on meteor events over the UK. Phase I has been to establish a transmit beacon and Phase II is to create a network of receivers to monitor the radio echoes from meteors and stream data over the internet to support the study of meteor events and their impact on the ionosphere. Another key objective is to make possible a range of accessible radio-related STEM projects building on the interest in space and astronomy.

RSGB 2022 Convention presentation - The UK Meteor Beacon Project

Job’s Radio Telescope Observes Maser W3(OH)

Over the past few years we've seen a lot of interesting observations coming from Job's Radio Telescope, which is Job Geheniau's 1.5m dish connected to an RTL-SDR (with additional filters and LNAs). He has done things like mapped the galaxy via the Hydrogen line, observed red supergiant stars, imaged a supernova remnant, detected a Pulsar, and measured the basis for the dark matter hypothesis.

In his most recent work Job has managed to detect the W3 star forming region at the Hydroxyl (OH) frequency of 1665.405 MHz.

W3 is an enormous stellar nursery about 6200 light-years away in the Perseus Arm, one of the Milky Way galaxy's main spiral arms, that hosts both low- and high-mass star formation. - Source

Hydroxyl (OH) can be observed both in emission and absorption. Emission frequently manifests itself as maser emission which is of specific interest. Energy Levels of OH Diatomic molecules like OH have numerous energy levels as they not only have electronically excited levels, but they can also vibrate and rotate. Both rotation and vibration are quantized and give rise to the large number of levels. Because of the wealth of energy levels, OH can be observed at various wavelength in the optical, infrared and radio regime. - Source

Over on the RTL-SDR Facebook group (not affiliated with this blog), Job has described his experiment in more detail (link requires a Facebook account and membership). He writes: 

As you may know or not...., I have been busy the last few weeks trying to detect maser W3(OH) with my 1.5-1.9 dish. The W3 complex lies in a darkened part of the Perseus galactic arm, at a distance of ∼2.2 kpc, and is one of the most intensively studied star-forming regions in the Milky Way Galaxy. Quite a challenge! It looks like I have a hit now after all.

Adjusting the Feed, calibrating the position of the dish and a lot of trial and error and a lot of patience seem to be leading to a result after all.... For now, I will keep this as my W3(OH) registration at 1665.405 MHz. Taking into account the Vlsr of currently 17 km/s (speed of earth and rotation around the sun), the final result comes close to the correct measurement. 1665.789 MHz = -32.22 km/s. Vlsr according to my calculations in terms of location and time is 17 km/s. -32-17=49 km/s. I think and hope that -49 km/s is the correct velocity of W3(OH) also considering the reasonably clear peak in the measured values in the graph.

These W3(OH) results were done with a special 1665 bandpass filter and 2 mini circuits lna/s. I will keep measuring for a while in the coming days, but soon I will switch back to another Feed over, namely the now under construction 611 MHz Feed with associated bandpass filter to once again 'capture' pulsar B0329+54. My ultimate goal with this dish!

I was very close last six months, but after extensive research with fellow radio amateurs we unfortunately could not confirm with 100% (!) certainty that the pulsar was detected at 1420 MHz with the 1.9 dish.

Also that research continues with longer exposure times and now research at 611 MHz, there is still some soldering and drilling and sawing to be done..... But first things first. Glad with this result anyway. Takes a lot of perseverance and patience.

Job's Radio Telescope detects Maser W3(OH).
Job's Radio Telescope detects Maser W3(OH).
Job's Radio Telescope detects Maser W3(OH).
Job's Radio Telescope detects Maser W3(OH).

Radio Jove Spectrograph Hardware and Software

NASA's Radio Jove is a project that enables students and amateur scientists from around the world to observe and analyze the HF radio emissions from Jupiter, our Sun and our galaxy using easy to construct HF radio telescopes that receive spectrographs from 16-24 MHz. The project has existed for more than two decades, and these days the telescope builds mostly make use of low cost software defined radios.

In a presentation for the Society of Amateur Radio Astronomers (SARA) Richard Flagg & Jim Sky talk about what sort of hardware is used these days for the Radio Jove project. They note that SDRs like the Softrock, Funcube Dongle Pro+, SDR-IQ, SDR-14, RTL-SDR, and RASDR have been used. They go on to discuss some of the spectrograph logging software that is used with the project as well.

The presentation slides in PDF form can be found here.

Richard Flagg & Jim Sky: Radio Jove Spectrograph Hardware and Software (RJ10/11)

WiFi Grid RTL-SDR Radio Telescopes featured in SARA2022 Conference Talks

Over on YouTube the Society of Amateur Radio Astronomers have recently uploaded talks from their SARA 2022 online conference. Two of the talks we've seen focus on describing results produced by small and cheap WiFi Grid RTL-SDR radio telescopes.

Back in early 2020 we first published an article about how it is possible to use get into amateur radio astronomy cheaply using off the shelf WiFi grid dishes, combined with a 1420 MHz LNA + filter, an RTL-SDR and the SDR# software with IF average plugin to measure the galactic hydrogen line.

In the SARA conference we've seen two talks expanding on the use of WiFi grids for radio astronomy. In the first talk Alex Pettit discusses how he's used a WiFi grid attached to an equatorial telescope mount, and a custom modified feed in his setup. In his talk he explains how to use the IF average plugin, and how he uses a MATLAB script to process and plot the saved data.

Alex Pettit: Galactic Hydrogen 1.42 GHz RF Emission Radio Astronomy for $300

In the second talk Charles Osborne describes his "Scope-In-A-Box" which consists of the WiFi Grid, LNA, Filter and RTL-SDR combination and compare the setup versus the same hardware used on a larger 3.7m dish.

Charles Osborne: Comparing Scope-in-A-Box to a 3.7m Dish

If you were interested in those talks, you might also want to check out the other talks from the conference, many of which also involve the use of software defined radios in the receive chain for various amateur radio astronomy experiments.