Tagged: websdr

PhantomSDR: WebSDR Software for the RX888 MKII and Other SDRs

Recently Reddit user magicint1337 brought attention in a post to PhantomSDR, a web SDR program for the RX888 MKII SDR. PhantomSDR is not new, having been first uploaded to GitHub two years ago, but it appears that it hasn't gained much attention so far. Web SDR software allows an SDR to be accessed publically or privately remotely over an internet connection. He writes:

PhantomSDR is a Web SDR Software that can sample the whole HF Band using the RX888 MK II, it utilizes the GPU to do so efficiently, the CPU can also be used but has to be strong enough to handle it.

The Software itself supports nearly all Devices, as they are passed from another program like rx_sdr to PhantomSDR. It features high quality Waterfall Zoom efficiently, it can handle hundreds if not thousands of users depending on the Hardware and is open source. There is also a sdr-list linked below.

It's a good alternative to OpenWebRX or WebSDR as it's easy to set up and can handle higher bandwidths and more users than the other alternatives i named. Decoders will also come and run in WebAssembly on the Client, so the Server has no Usage and can handle many Users. It can also handle higher bands, for example VHF.

It is developed further and further because it's open-source and everybody can help develop it further!

List: https://sdr-list.xyz
Software: https://github.com/PhantomSDR/PhantomSDR

The author of PhantomSDR also chimes in on the comments noting:

Author of PhantomSDR here, wondering where all the traffic to the github repo came from and discovered someone has posted it here.

This is started off as project to publish a self-made direct sampling SDR to the internet. Then it grew to became a learning project about SDR and DSP. I picked RX888 as the SDR to put in the screenshot due to it being easily available as compared to the one I built myself. This wasn't really meant to be much apart from a fun learning exercise!

I wanted to open source this because I think others might find it useful also to host higher bandwidth SDRs, or just have a different user interface.

sdr-list.xyz is made by a contributor to the project, but I would prefer to have more infrastructure under the PhantomSDR domain. This will happen once I get a suitable domain name and the server code up. And yes it will be https and the server will be open source.

Currently, there appears to be one publicly hosted server that can be accessed via the list at sdr-list.xyz. 

This web SDR software is reminiscent of the University of Twente WebSDR software which is currently closed source. It is also similar to KiwiSDR and OpenWebRX which is also an online web-based SDR system.

We note that there has been controversy over the RX888 SDR in the past as developers of popular software in the SDR community such as SatDump and SDR++ have frowned on it due to its poor driver support, the lack of any developer support from the manufacturer, and poor overall RF design.

UPDATE: Jie Feng, the author of the software would like to add that the official server list is at https://phantomsdr.github.io/servers. sdr-list.xyz is a third party list set up by a fan, and Jie is working out how to integrate it with his official list. Jie also notes that PhantomSDR also supports many other SDR's like RTL-SDR, HackRF, SDRplay RSP etc. 

Jie has also provided a follow-up Reddit post here

PhantomSDR Screenshot
PhantomSDR Screenshot

Financial Times Story about Ukraine Radio Monitoring with WebSDRs

The Financial Times has recently run a video story on how hobbyist WebSDR setups are being use to record Russian radio communications during the war on Ukraine.

In these modern times, we would expect the Russian military to be making full use of encrypted radio communications on the battlefield. But early on in the invasion it came to be clear that much of the Russian forces are much less advanced than first thought, and are using cheap civilian unencrypted radios that anyone nearby can listen to with an RTL-SDR or via a web connected SDR.

The FT story focuses on how open source contributors from all over the world are helping to monitor internet connected WebSDRs that are close enough to receive Russian radio communications. And how volunteers are helping translate, confirm authenticity, and collect information about possible war crimes. 

If you are interested, previously we posted about a similar video story from the New York Times, and have covered various bits of radio related news from the war in two previous posts [1][2].

Ukraine's battle of the airwaves | FT

Decoding HFDL ACARS with a WebSDR and PC-HFDL

In the previous episode Rob from the Frugal Radio YouTube channel showed us how to decode HF ACARS using PC-HFDL and an HF capable SDR such as the Airspy HF+. In that episode he mentioned that it is possible to decode HF ACARS using a WebSDR as well.

In this weeks episode, Rob shows us how to do just that, making use of WebSDR receivers and the PC-HFDL software. Like the previous episode we see how to plot the aircraft HF ACARS position data on Google Earth and how to read and interpret some example messages received.

Decoding HFDL ACARS with a WebSDR and PC-HFDL

TechMinds: Using Public Online SDRs without SDR Hardware

This weeks video on the TechMinds channel explores the various online web SDRs that are available to access for free. Accessing these online SDRs does not require any hardware apart from a PC and internet connection, although of course you are then receiving signals from a different location to yourself. 

In the video he shows how to access the SDR# Spy Server Network which mostly consists of Airpsy and RTL-SDR units, the SDR-Console V3 Server network which consists of a wide array of different SDRs, the browser based WebSDR network which is mostly soundcard based SDRs but also RTL-SDR and other SDRs, and finally the KiwiSDR network which is made up of KiwiSDRs.

Using Software Defined Radio Without SDR Hardware - WebSDR

Frugal Radio: 2020 SDR Guide Ep 2 – Using Free Online SDRs

Over on his YouTube channel Frugal Radio has released the second episode in his 2020 SDR Guide series. In this video, Frugal Radio shows how to connect to remote SDRs such as KiwiSDR OpenWebRX, WebSDR, SDR-Console v3 Servers, and SDR# SpyServers. He shows how to use these remote SDRs to monitor long range aviation channels, amateur radio operators, and VHF Public Safety channels in the US. He also demonstrates how to decode HFDL signals from aircraft using WebSDR and free software, and verifies the aircraft locations via online tracking sites.

2020 SDR Guide Ep 2 : How to use over 500 remote SDRs free online (webSDR, KiwiSDR & HFDL decode)

An RTL-SDR & SDRplay based WebSDR Designed Specifically for QO-100 (Es’Hail-2) Monitoring

Over on YouTube user [Radio Electronics] has uploaded a useful video showing how to install your own personal SDRplay or RTL-SDR based WebSDR for QO-100 (aka Es'Hail-2) reception. Es'Hail-2 is the first geostationary satellite with amateur radio transponders on board, and is positioned at 25.5°E which covers Africa, Europe, the Middle East, India, eastern Brazil and the west half of Russia/Asia.

The idea behind a WebSDR is to run your RTL-SDR QO-100 receiver on a remote Raspberry Pi (perhaps mounted close to the antenna on your roof etc). The Pi runs custom WebSDR software that has been created from scratch by [Radio Electronics] specifically for monitoring Es'Hail-2. Then you can access your QO-100 receiver from any device on your network that has a web browser (computer/phone/tablet etc). The interface of his WebSDR appears to be quite slick, which multiple QO-100 specific options and labels.

Quite a lot of work must have gone into this software which looks to be of high quality, so it is definitely worth checking out if you are interested in QO-100/Es'Hail-2 monitoring.

Es'Hail-2 QO-100 WebSDR
Es'Hail-2 QO-100 WebSDR

In the first video he first talks about various methods for downconverting the 10489.550 MHz QO-100 CW signal into a range receivable by the RTL-SDR or SDRplay. He then goes on to show the exact steps to install and run his WebSDR software on a Raspberry Pi 3.

In the second video he goes on to demonstrate the web browser interface highlighting the QO-100 specific features that he has implemented such as being able to compensate for any LNB frequency drift via a feature that can lock to the QO-100 PSK beacon.

es-hail-2 QO-100 WebSDR Part-1: INSTALLATION

es-hail-2 QO-100 WebSDR Part-2: OPERATION

RSGB Talk – The Farnham WebSDR: DC to Microwaves on your Smartphone

Over on YouTube the Radio Society of Great Britain (RSGB) has uploaded a talk by Noel Matthews (G8GTZ) titled "The Farnham WebSDR: DC to Microwaves on your smartphone". The Farnham WebSDR runs 8 (soon to be 10) RTL-SDR dongles in order to cover multiple bands from DC to 2 GHz.

If you're interested in their talks, the RSGB also recently uploaded several other amateur radio related talks from their 2018 convention to their YouTube channel.

This presentation gives an overview of the Farnham WebSDR (http://farnham-sdr.com/) which currently covers the LF bands through to 10GHz. The presentation describes the system architecture and antennas currently used on each band and how the team has used RTL dongle receivers, available for under £10, to give good RF performance on all bands from DC to 10GHz. There is a demonstration of the SDR in use on both PC and smartphone.

RSGB 2018 Convention lecture - The Farnham WebSDR: DC to Microwaves on your smartphone

A Visualization of Yearly Shortwave Activity with WebSDR

The WebSDR from the University of Twente, Netherlands is a wideband HF SDR that is accessible from all over the world via the internet. It was first activated in 2008 making it the very first WebSDR ever. The creator of the service Pieter-Tjerk de Boer PA3FWM has recently made available spectrum image archives which show the HF band conditions over the last two years.

Intrigued by this data, London Shortwave decided to make a timelapse animation of this image data. The results are shown in the videos below, and London Shortwave adds:

The X axis represents the frequency and the Y axis is the time of day, starting at the top. Conventional wisdom about band behaviour can be easily confirmed by watching this video: the 60m, 49m and 41m bands are mostly active after dark, with the 60m and the 49m bands being generally busier during the winter months. The 31m band is most active around sunset, but carries on all night until a few hours after sunrise. The 25m band is active during sunrise and for a few hours afterwards, and around sunset during the winter months, but carries on all night during the summer. Peak activity on the 22m and 19m bands is also clustered bi-modally around the morning and the evening hours, though somewhat closer to the middle of the day than on the 31m and the 25m bands. The 16m band is mostly active during the daylight hours and the 13m band is quiet throughout the year except for the occasional ham contest.

[Fast] Visualising shortwave band activity throughout the year

Visualising shortwave band activity throughout the year