Tagged: HFDL

Feeding ACARS Data to Airframes.io

Thank you to a contributor for submitting an article about Airframes.io, which is an ACARS/VDL2/HFDL/Satellite ACARS aggregation site. The article below it attributed to Kevin Elliott and was edited by Frank Vance. They would also like to attribute the large group or volunteers at Airframes.io.

One of the most popular hobbyist uses of SDR is receiving and decoding vehicle information data such as ADS-B for aircraft or AIS for marine traffic.  Some hobbyists have been banding together to exchange their mutual data streams to provide coverage over wide geographic areas.

One of the largest and most successful such projects in the aviation realm is ADS-B Exchange (https://www.adsbexchange.com/), where over 8,000 volunteer feeders provide ADS-B data to a global aviation map in real time.  

But modern air carriers have much more data to and from their aircraft than just the position information from ADS-B.  In the 1970s, ACARS was created to carry that traffic.  Today, ACARS is seen on its own frequencies on VHF, embedded in AVLC on the VDL2 VHF frequencies, on HF (shortwave) frequencies using the HFDL network of stations worldwide, and on satellite on both the Inmarsat (ACARS over AERO, or AoA) and the Iridium (called ACARS over Iridium, or AoI) systems.

Airframes.io (https://app.airframes.io/) is a project that has been under development for a while to aggregate ACARS data in the same way ADS-B Exchange is aggregating ADS-B data.  Under the capable leadership of Kevin Elliott (https://github.com/kevinelliott), software development has progressed to the point that new feeders are actively being sought to improve the global coverage and provide a broader base of data to improve the decoding.

With a wide variety of data sources, this is a collaboration project that is open to all levels of SDR hobbyists.  A simple RTL-SDR.COM unit attached to a Raspberry Pi with a smaller antenna works well with the VHF coverage.  Depending on one's interest level, an HFDL feeder may require multiple SDRs with much broader frequency range, capable of reception in the sub-30 MHz bands.  The L-band based Iridium AoI uses a small antenna as well, but requires a wide bandwidth SDR.  Finally, reception of the C-band Inmarsat (AoA) traffic may involve a moving dish antenna of at least 6 foot diameter to obtain usable signals.

What kind of data is seen in ACARS?   One can observe weather conditions aloft, messages to/from the carrier operations staff, information about the origin and destination of the flight, and technical data on the aircraft operation (not all of which can be decoded at this time.)  Additionally, the HFDL and satellite feeds offer location information out of sight of the traditional ADS-B coverage, such as over the oceans and polar regions.
The About page at Airframes.io (https://app.airframes.io/about) has plenty of good information to help anyone get started with feeding, including links to popular software packages useful for running different types of feeders.  Support is available on the #airframes-io channel (https://discord.gg/X2TgnFgsRW) on the ADSBExhange Discord server (https://discord.gg/aXt7KdycJk).
Additional information about setting up a receiver/feeder for HFDL, Inmarsat L-band, Inmarsat C-band, and Iridium L-band is available on The Bald Geek's GitHub page: https://thebaldgeek.github.io/Consider joining with the dozens of volunteers already feeding and contributing software updates to the Airframe.io project.
Airframes.io Map
Airframes.io ACARS Messages

dumphfdl: A Multichannel HFDL Decoder for SDR

Thank you to Tomasz Lemiech for writing in and sharing with us the release of his new software "dumphfdl". Tomasz is the author of dumpvdl2 and also maintains RTLSDR-Airband. Regarding dumphfdl Tomasz writes:

dumphfdl is a multichannel HFDL decoder for Linux. HFDL (High Frequency Data Link) is a protocol used for radio communications between aircraft and a network of ground stations using high frequency (HF) radio waves. Thanks to the ability of short waves to propagate over long distances, HFDL is particularly useful in remote areas (eg. over oceans or polar regions) where other ground-based communications services are out of range. While many aircraft carriers prefer satellite communications these days, HFDL is still operational and in use.

Available HFDL decoding applications typically run on Windows and take an audio signal on input. The signal has to be delivered to the decoder via a physical cable from an external shortwave receiver or via a virtual cable from an SDR. This makes these apps inherently single-channel. This shortcoming does not apply to dumphfdl which interfaces directly with the SDR, so no pipes or virtual audio cables are needed. The program can decode multiple HFDL channels simultaneously, up to available CPU power and SDR bandwidth (there is no fixed channel count limit).

dumphfdl uses SoapySDR library (https://github.com/pothosware/SoapySDR) to communicate with the radio. Any HF-capable receiver for which a SoapySDR driver exists, should work. I have tested it briefly with an RTL-SDR v3 dongle in direct sampling mode. While I had a bit of a success with it, HFDL signals are often quite weak, so a real HF radio (like SDRPlay RSP1A or Airspy HF+) gives much better results (more decoded messages).

The program may log decoded messages to a file or send them over the network for external processing and storage.

HFDL messages often contain diagnostic data accompanied with aircraft position information. The program may extract this data from decoded messages and provide a positional data feed for external plane tracking apps (eg. Virtual Radar Server). An example screenshot from VRS is attached - taken after about 2 hours of decoding eight HFDL channels spread across three HFDL subbands: 6.6, 8.9, and 10.0 MHz with two dumphfdl instances on two radios - RSP1A and Airspy HF+. Definitely a nice way to expand the coverage of a home ADS-B radar :-)

Refer to the README.md file in the project repository for more details. The program is still under development, so new features and further improvements might be expected in subsequent releases.

dumphfdl - decoded aircraft positions plotted on a map

Decoding HFDL ACARS with a WebSDR and PC-HFDL

In the previous episode Rob from the Frugal Radio YouTube channel showed us how to decode HF ACARS using PC-HFDL and an HF capable SDR such as the Airspy HF+. In that episode he mentioned that it is possible to decode HF ACARS using a WebSDR as well.

In this weeks episode, Rob shows us how to do just that, making use of WebSDR receivers and the PC-HFDL software. Like the previous episode we see how to plot the aircraft HF ACARS position data on Google Earth and how to read and interpret some example messages received.

Decoding HFDL ACARS with a WebSDR and PC-HFDL

Frugal Radio: HFDL HF ACARS Decoding Tutorial

In Rob's latest episode of his excellent aviation communications series on his Frugal Radio YouTube channel he shows how to decode aircraft HF ACARS (HFDL) using a software defined radio. HFDL is short for "high frequency data link", and is a method aircraft use for sending text and data communications to ground stations. It is an alternative to VHF or satellite ACARS communications methods.

In the video he shows how he's been able to receive HFDL from all over the world using a simple HF dipole antenna and an Airspy HF+ Discovery. He goes on to show how to find HFDL signals, and how to decode signals using SDR# and the PC-HFDL software. Finally he shows examples of aircraft received, and how to interpret some of the information being received, including location information.

How to decode HF ACARS (HFDL) free with your SDR - Monitoring Aviation Communications Episode 8

TechMinds: Decoding HF ACARS HFDL with an SDRplay RSPdx

In his latest YouTube video Tech Minds shows how to decode HF ACARS (HFDL) with an SDRplay RSPdx. Tech Minds initially explains what HFDL is, and how it is typically received via special aviation radios. He goes on to show how we can decode it from home with any HF capable SDR, and a program called PC-HFDL. Finally he explains how to set up a Google Earth file that can display the aircraft location data that is provided in some HFDL messages.

Decoding High Frequency Data Link - HF ACARS HFDL

Demonstrating HFDL Reception with a Cloud-IQ SDR and MultiPSK

Over on YouTube user Shortwave Bavaria has uploaded a video that demonstrates HFDL reception. HFDL is short for High Frequency Data Link and is a signal used by aircraft to communicate short messages with ground stations over long distances. It is often used in place of VHF ACARS when flying over oceans.

In his video Shortwave Bavaria uses a 26.5m end fed wire, and a Cloud-IQ SDR. But we note that any HF capable SDR can be used to receive HFDL. SDR-Console V3 is used as the receiver, and MultiPSK Professional edition as the decoder. Many HFDL messages contain location data, so aircraft can be plotted on a map and he demonstrates this using Google Earth. In the video he notes how amazing it is that flights from across the globe can be received with his set up.

Amazing Decoding HFDL reception with SDR over central Europe

An Overview of Aircraft Communication Modes from HF to UHF

Over on YouTube icholakov has uploaded an informative video that gives an overview of the main communication modes that aircraft use from HF to UHF. In the video he also gives examples of those modes being received and decoded with an SDR.

The modes that he explains and demonstrates are VHF voice, VHF ATIS automated weather, ACARS short data messages, HF voice, HF automatic weather, HF data selective calling (SELCAL), HF data link (HFDL) and UHF ADS-B aircraft positioning.

2018: Monitoring airplane communications (aviation radio signal monitoring via sdr)

Aircraft Messages with HFDL, MultiPSK and the RTL-SDR

Over on YouTube user k2nccvids has posted two videos showing how he was able to decode High Frequency Data Link (HFDL) packets using the RTL-SDR, Ham-it-up upconverterMultiPSK and HFDL Display. HFDL is a service similar to ACARS but sent over HF frequencies. It is used to sent short messages to and from aircraft and ground stations.

In the first video k2nccvids uses MultiPSK with the RTL-SDR directly and also uses the add on software HFDL Display to more clearly view received HFDL packets. In the second video he uses SDR-CONSOLEv2 to monitor three HFDL frequencies simultaneously, with MultiPSK and HFDL Display still being used for decoding and display.