Tagged: Meteor M2-3

SatDump Version 1.1.0 Released – Feature Overview

SatDump is a popular program that can be used with RTL-SDRs and other software defined radios for decoding images from a wide array of weather imaging (and other) satellites including GOES, GK-2A, NOAA APT, NOAA HRPT, FengYun, Electro-L and Meteor M2 LRPT + HRPT, and many many others. It is multiplatform, running on Windows, MacOS, Linux and even Android. Because of it's good decoding performance, wide satellite and OS compatibility, it is the most recommended software for satellite decoding.

Recently SatDump was updated to version 1.1.0 and the new version brings many enhancements and new features. In summary, Lua scripting support has been added, calibrated products are now possible, composites can be made via Lua scripting, nightly builds are now available on GitHub, Mac .dmg builds are now available, decimation has been added, an SDR Server is available, and a Windows installer was added.

Support for various satellites and their instruments have also been added for NOAA APT, CCSDS LDPC decoding for Orion, LandSat-9, TUBIN X-Band, FengYun-3G/3F, Meteor M2-3, Geonetcast (soon), GOES RAW X-Band,  STEREO-A, DSCOVR EPIC, ELEKTRO-L N°4, Inmarsat STD-C, UmKA-1 (soon), PROBA-V GPS .

SatDump also now includes rotor tracking control which works together with it's satellite pass predictor and scheduler. There is no more need to use programs like Orbitron or Gpredict as everything can be handled by SatDump.

An insane amount of work has gone into SatDump, so if you like the software please remember to support the developer @aang23 by donating on Ko-Fi.

SatDump Rotator controller, Tracker and Scheduler

Building a DIY Portable 137 MHz Yagi Antenna for LRPT

Over on his YouTube channel dereksgc has uploaded the next video in his series on satellite reception. In this video he shows how to build a Yagi antenna tuned for 137 MHz, which is great for receiving NOAA APT and Meteor M2-3 LRPT. Note that a Yagi antenna will give you stronger reception compared to a turnstile, QFH or V-Dipole, but as it is a directional antenna you will need to manually point it towards the satellite as it passes over your location.

For Meteor M2-3 LRPT, a Yagi antenna may be beneficial, as it appears this satellite is having some issues with signal strength, due to a possibly defective antenna that did not fully unfold on the satellite.

The Yagi antenna design is a four element design, with one reflector, two directors and one driven dipole element. The physical construction consists of a piece of wood for the boom, brass welding rods for the elements, and a terminal block for the active dipole element. 3D printed handles are added for easy holding and the RTL-SDR and LNA sit directly on top of the boom.

DIY portable 137 MHz yagi antenna (for good LRPT) || Satellite reception pt.13

Video on Meteor M2-3 LRPT, HRPT and Telemetry Reception

Over on YouTube dereksgc has another video on Meteor M2-3 reception. In the video Derek goes over the history of Meteor M launches and then goes on to test reception of the 3.4 GHz telemetry signal which he recorded early after the satellites launch.

The next day he sets up 1.7 GHz HRPT reception using a hand tracked satellite dish and is successful as receiving it. He then goes on to test 137 MHz LRPT reception with a V-dipole antenna and RTL-SDR and is also successful. Finally he decodes the recordings using SatDump and is able to get some great images.

Derek also notes that there might be a problem with the LRPT antenna which could explain some reports of poor reception at some elevations of the satellite. He notes that it seems likely that the QFH antenna extension process on the satellite didn't extend fully or at all.

Receiving Meteor-M N2-3 LRPT and HRPT || Satellite reception pt.11

Saveitforparts: Receiving Images from the new Russian Satellite Meteor M2-3

A few days ago we posted about the successful launch and deployment of the latest Russian Meteor M2-3 weather satellite. The satellite is currently actively transmitting LRPT weather images.

Over on his YouTube channel, "saveitforparts" has uploaded a video showing how he received images from the new satellite using his RTL-SDR. His method involves first recording the signal pass on a Raspberry Pi with rtl_fm, and then passing that wav file into SatDump for decoding and image generation.

We note that it is also possible to directly live decode the pass using SatDump, however a Raspberry Pi may be a little too slow to run the GUI version of SatDump. Instead you could use rtl_tcp on the Pi and run SatDump on a networked PC, or simply run the RTL-SDR and SatDump on the PC or a more powerful device like an Orange Pi 5.

Ultimately he experiences some unresolved problems with the decoding process, but is able to end up with a decent image.

Grabbing Images From New Russian Satellite (Meteor M2-3)

Meteor M2-3 Now In Orbit and Transmitting Weather Images

Meteor-M satellites are Russian owned weather imaging satellites that are in polar orbit. They transmit images to earth in the LRPT format at 137 MHz, making them almost as easy to receive as the older NOAA APT satellites. Unfortunately all prior Meteor M satellites have suffered an early ending or partial ending to their mission from technical faults or micro-meteorite collisions.

However, on June 27th 2023 the latest Meteor M2-3 satellite was successfully launched on a Soyuz-2 and has been reported to be already transmitting LRPT images of the earth.

Soyuz-2 Launch of Meteor M2-3 and 42 Cubesats

To receive images from the Meteor M2-3 satellite you will need an appropriate 137 MHz satellite antenna such as a v-dipole, Turnstile or QFH. An RTL-SDR or any similar SDR can be used as the receiver. 

These days, the easiest software to use to receive Meteor M2-3 is probably SatDump, whose Windows and Android binary releases can be downloaded from the GitHub Releases page. Linux users can follow the build guide in the SatDump Readme. We note that we've found the SatDump GUI to run well on an Orange Pi 5, which makes this a good portable solution too. 

To determine when the satellite is over your location you can use satellite tracking software such as Gpredict on Linux and Mac, or Orbitron on Windows. (For Orbitron, remember to run the software as Administrator, and to update the TLEs so that the Meteor M2-3 weather.txt TLE tracking data is downloaded). 

More information about Meteor M2-3's operational status can be found on Happysat's page.

Over on Twitter we've already seen various Tweets about successful reception.

@aang254, the author of SatDump has also noted that he is working on finalizing projections for Meteor M2-3 and this should be ready to use in SatDump shortly.

We also note that a Meteor Demodulator has also now just been added to SDR++.

Another interesting fact is that along with Meteor M2-3 the UmKA cubesat was launched will transmit astronomical images at 2.4 GHz. To receive this, you will most likely need a 2.4 GHz WiFi dish, and also a motorized tracking system to track the satellite as it fly's overhead. Decoding of this is already supported in SatDump according to the programmer.