Tagged: laser

Using an RTL-SDR in Dual-Comb Spectroscopy using Diode Lasers

Thank you to Antonio from the Polytechnic University of Madrid, Department of Photonic Technology and Bioengineering for writing in and sharing with us his teams latest research titled "Dual-Comb Spectrometer Based on Gain-Switched Semiconductor Lasers and a Low-Cost Software-Defined Radio". The research involves the use of an RTL-SDR Blog V3 dongle in place of an expensive digital oscilloscope for measuring the output of a dual-comb spectrometer. The abstract of the paper reads as follows:

Dual-comb spectroscopy has become a topic of growing interest in recent years due to the advantages it offers in terms of frequency resolution, accuracy, acquisition speed, and signal-to-noise ratio, with respect to other existing spectroscopic techniques. In addition, its characteristic of mapping the optical frequencies into radio-frequency ranges opens up the possibility of using non-demanding digitizers.

In this paper, we show that a low-cost software defined radio platform can be used as a receiver to obtain such signals accurately using a dual-comb spectrometer based on gain-switched semiconductor lasers.

We compare its performance with that of a real-time digital oscilloscope, finding similar results for both digitizers. We measure an absorption line of a H13C14N cell and obtain that for an integration time of 1 s, the deviation obtained between the experimental data and the Voigt profile fitted to these data is around 0.97% using the low-cost digitizer while it is around 0.84% when using the high-end digitizer.

The use of both technologies, semiconductor lasers and low-cost software defined radio platforms, can pave the way towards the development of cost-efficient dual-comb spectrometers.

The paper can be freely accessed on IEEE Access which is open access.

We note that in the past we've also seen an RTL-SDR used as part of a low cost Ozone spectrometer experiment, and and Airspy used in an optical FM spectroscopy experiment.

Dual-comb Optical Spectroscopy setup with an RTL-SDR Blog V3

Using a LimeSDR to Implement Software Defined Optoelectronic Systems

Back in January of this year we posted about PhD student Lucas Riobó's work that about about using an RTL-SDR to create a low cost optical "high-speed real-time heterodyne interferometer". In that work he used an RTL-SDR as a data acquisition tool for an optoelectronic front end sensor (opto = visual light). This allowed him to translate optical data into an RF signal, which could be received by the RTL-SDR, and then easily processed in a PC.

In his latest work Lucas has published a paper titled "Software Defined Optoelectronics: Space and Frequency Diversity in Heterodyne Interferometry" in the IEEE Sensors Journal. Note that the paper is behind an IEEE paywall, but Lucas notes that if you're interested in discussing his work that you can contact him at [email protected]. The research is similar to the work published in January, but uses a LimeSDR which can take advantage of TX capabilities. Lucas writes:

In this work, a general architecture for the implementation of software-defined optoelectronic systems (SDOs) is described. This concept harnesses the flexibility of software-defined hardware (SDH) to implement optoelectronic systems which can be configured to adapt to multiple high speed optical engineering applications. As an application example, a software-defined optical interferometer (SDOI) using the LimeSDR platform is built. The system is tested by performing high speed optical detection of laser-induced photoacoustic signals in a concentrated dye solution. Using software modifications only, conventional single carrier and also multicarrier heterodyne techniques with space and frequency diversity are performed.

A main difference with the other article described in this post, is that we could also use the transmission path of the LimeSDR to perform many modulation waveforms of the electromagnetic fields which will interfere, to provide a noticeable performance improvement in single-shot interferometric measurements.

PC: Programmable controller, SDH: Software-defined hardware platform,  E/O: Electrical-Optical block, O/E: Optical-Electrical block, OS: Optical System.
PC: Programmable
controller, SDH: Software-defined hardware platform, E/O: Electrical-Optical block, O/E:
Optical-Electrical block, OS: Optical System.
A Software Defined Optical Interferometer
A Software Defined Optical Interferometer

Using an Airspy SDR for Optical FM Spectroscopy

Spectroscopy is the study of how electromagnetic radiation interacts with matter and it can be used to study the internal structure of matter. At the DLR Institute for Technical Physics in Stutgart Germany, Peter Mahnke has been using an Airspy software defined radio as a "lock-in amplifier" in a FM spectroscopy setup. A lock-in amplifier is simply a type of amplifier that can extract a signal from a known carrier in an extremely noisy environment. 

In the experiment a laser is fiber optically coupled to an eletro-optic phase modulator, which modulates a 400 MHz FM signal onto the light. The light is then passed into a Carbon monoxide absorption cell with a photodiode used to take the spectroscopic measurements. The signal from the photodiode is passed into a LNA and then into the Airspy where the signal can then be processed on the PC.

The paper is very technical, but describes the setup, and how they characterized and calibrated the Airspy for their measurements. They conclude with the following:

A successful demonstration of a commercially available software defined radio as a lock-in amplifier was performed. For this purpose, the tuner front end and back end were characterized. The sensitivity and non-linearity of the receiver circuit was measured and analyzed. Acquisition of a CO spectral line was demonstrated using FM-spectroscopy with a repetition rate of 1 kHz. This proves the usability of an off-the-shelf SDR as a cheap but powerful lock-in amplifier by adding PLL driven frequency generators. The drawback of the arbitrary initial phase of the used phase locked loops can be either solved by software or hardware measures.

This experiment is somewhat similar to one we posted about earlier in the month where an RTL-SDR was used in an optical interferometer lab experiment.

FM Spectroscopy with an Airspy Software Defined Radio.
FM Spectroscopy with an Airspy Software Defined Radio.

An RTL-SDR Based Optical Laser Interferometer Implementation

Thanks to PhD student Lucas Riobó of the University of Buenos Aires, Argentina for submitting his very interesting work on creating a "High-speed real-time heterodyne interferometer" with a low cost RTL-SDR dongle. This is a new application for the RTL-SDR that we have not yet seen.

Interferometers are tools that combine two separate electromagnetic waves (e.g. radio or light) and analyze the interference pattern created by their combination. One usage for example is creating a radio telescope interferometer using multiple small radio dishes. The result is that you can get the same resolution as a much larger dish without the cost of needing to build a huge dish. This has been done before with RTL-SDR's and Pulsar detection.

The paper and concept is fairly complex for someone without a background in optical science, but basically it seems that Lucas has created an optical interferometer that interfaces with an RTL-SDR dongle via a wideband optoelectronic front-end. This allows the optical data to be translated into an RF signal which can then easily be analysed with the low cost RTL-SDR. A system like this reduces costs and allows for much easier data acquisition and processing on the PC. He writes:

As you may know, optical Interferometry is a family of techniques in which the superposition of electromagnetic waves (in the optical range of the spectrum), cause the phenomenon of interference in order to extract information. In this work, we implement an optical heterodyne interferometer. This interferometer, the waves (laser beams) that superpose have a frequency shift f0 between them. When the beams interfere, the intensity from the combination of the beams (interferogram) is a sinusoid signal at a frequency f0 (i.e. a carrier signal). In this work, one of the beams reflects over a sample that has a mechanical deformation. Therefore, this information is encoded in the phase of the carrier signal.

We applied the RTL-SDR dongle to demodulate the carrier signal to extract the phase information. Instead of using an antenna, we put a photodiode with a transimpedance amplifier (TIA). Thus, since the signal obtained from the photodiode and the TIA is proportional to the interferogram, the phase/frequency recovery techniques are the same as those used in telecommunications systems (i.e. we can use many demodulation algorithms developed by the community).

The OSA paper linked in the above text is behind a paywall, but Lucas has also shared with us a related paper research paper published in the University of Buenos Aires' Revista Elektron journal. Lucas also writes that you can freely contact him at [email protected] if you would like further information about the project.

The RTL-SDR Laser Interfereometer with Optoelectronic Front End and RTL-SDR
The RTL-SDR Laser Interfereometer with Optoelectronic Front End and RTL-SDR