Tagged: cubesats

Amazon AWS Satellite Ground Stations Now Available For Hire

Over on the AWS blog Jeff Barr has blogged about Amazon's new rentable ground station system called "AWS Ground Station". AWS, or Amazon Web Services is the server farm division of Amazon. They allow customers to rent out server capability on demand. In a similar sense, AWS Ground Station is aiming to allow customers to rent out satellite ground stations on demand.

Launching low cost micro/nano satellites has become very affordable in recent years and it's now common to see high schools, colleges, organizations and hobbyists designing, fabricating and launching their own satellites. Once launched, a ground station is required to receive the satellite's radio transmission as it passes over. Most low cost satellite owners will not have the budget to deploy ground stations all around the world for continuous monitoring of the satellite. This is where AWS Ground Station can take over, allowing a ground station on the other side of the world to be rented temporarily during a pass.

Currently the service is just starting, and only has 2 ground stations, but by 2019 they hope to have a total of 12. More information available on the official AWS Ground Station website.

Alternatively, there are other free open source services that could be utilized such as SATNOGS. SATNOGs relies on volunteer ground stations running antenna rotators that can be built with a 3D printer, some low cost motors and electronics, and an RTL-SDR. The antenna rotator carries a Yagi antenna and will automatically track, receive and upload satellite data to the internet for the public to access.

AWS Ground Station Web Site
AWS Ground Station Web Site

A Tour of Satellites in the QB50 Experiment

Over the last two weeks the QB50 experiment was launched from the International Space Station (ISS). The experiment consists of 36 cubesats built by various universities around the world, with the main science goal being to make measurements of the thermosphere (an upper atmospheric layer that the ISS orbits in). All the cubesats broadcast their telemetry in the 70cm (420 – 450 MHz) amateur band and they are expected to stay in orbit for about 3 months before falling back to earth. In a previous post we made a point to mention Lilacsat-1, which is one of the most interesting QB50 satellites due to its implementation of a FM to digital voice repeater on board.

The QB50 Experiment Launch
The QB50 Experiment Launch

Over on his blog destevez has been following these satellites, and has uploaded a post that shows him receiving and decoding several of the satellite telemetry packets. His gr-satellites GNU Radio package provides a means to decode many of the satellites in the experiment.

Some packets from QB50 and other satellites in the 70cm amateur band.
Some packets from QB50 and other satellites received by destevez in the 70cm amateur band.