Tagged: pulsar

Software De-Dispersion of RTL-SDR Pulsar Data

Back in September 2015 we posted about how radio astronomers Peter W East and GM Gancio were able to use an RTL-SDR dongle for the radio astronomy task of detecting pulsars. A pulsar is a rotating neutron star that emits a beam of electromagnetic radiation. If this beam points towards the earth, it can then be observed with a large dish antenna and a radio, like the RTL-SDR. 

More recently they published a new paper titled “Software De-Dispersion of RTL-SDR Pulsar Data” (pdf).  De-dispersion is a technique that allows very weak signals to be extracted from the background noise. The introduction to the paper reads:

Data files produced by RTL SDR dongles can be folded directly for pulsar detection using software such as rapulsar.exe. Using simple I/Q vector averaging software, the data can be down-sampled by factors of more than 100 prior to folding and/or period search processing to speed up useful data extraction. Ideally, wide band RF data should be de-dispersed to optimise later search and folding processing. De-dispersion is normally carried out by time adjusting data sampled from RF filter banks before combination. This note describes how data already digitised from the RTL SDR can be spectrum analysed or filtered using the FFT algorithm. Two methods are discussed, one summing power with some down-sampling; the second, a ‘coherent’ method that de-disperses the rtlsdr.exe .bin data file and outputs a .bin-compatible file. Both accurately de-disperses the data offering an improved folded data SNR.

More information about radio astronomy with the RTL-SDR, pulsars and the associated software links can be found at Peter W East’s webpage http://y1pwe.co.uk/RAProgs/index.html.

The de-dispersion principle
The de-dispersion principle

Detecting Pulsars (Rotating Neutron Stars) with an RTL-SDR

The RTL-SDR has been used for some time now as an amateur radio astronomy tool. Radio astronomers Peter W East and GM Gancio have recently uploaded a paper that details their experiments with detecting Pulsars with an RTL-SDR (doc file).

A pulsar is a rotating neutron star that emits a beam of electromagnetic radiation. If this beam points towards the earth, it can then be observed with a large dish antenna and a radio, like the RTL-SDR. The abstract of the paper reads: 

This project sought to determine the minimum useful antenna aperture for amateur radio astronomers to successfully detect pulsars around the Hydrogen line frequency of 1420MHz. The technique relied on the collaboration with GM Gancio, who provided RTL SDR data of the Vela pulsar (B0833-45, J0835-4510) and others, collected with a 30m radio telescope. This data was processed to determine the achievable signal-to-noise ratio from which, the minimum useful dish size necessary for some effective amateur work, could be calculated. Two software packages were developed to do synchronous integration, a third to provide a power detection function and a fourth for spectrum analysis to recover pulsar rotation rate.

With their system the authors were able to detect and measure the rotation period of the Vela pulsar. Also, from their data they were able to estimate that the minimum dish aperture required to observe the Vela pulsar would be 6m, noting that the Vela pulsar is probably the strongest pulsar ever detected. They also write that by utilizing 5 RTL-SDRs to gather 10 MHz of bandwidth together with some processing that the minimum required dish aperture could be reduced to 3.5m.

The Vela pulsar pulse power integrated over a 50 second 100MB file, combining some 560 pulsar pulses
The Vela pulsar pulse power integrated over a 50 second 100MB file, combining some 560 pulsar pulses.

In addition to these Pulsar experiments, Peter has also uploaded new papers about improving his Hydrogen Line RTL-SDR Telescope (pdf), and has updated his paper on improving the frequency stability of RTL-SDR’s with air cooling (doc file). Peter found that the frequency stability of the RTL-SDR (with standard oscillator) could be significantly improved by adding heat sinks and aircooling them. The graph from his paper below summarizes his results.

Results from air cooling the RTL-SDR.
Results from air cooling the RTL-SDR.
The air cooled and heatsinked RTL-SDRs
The air cooled and heat sinked RTL-SDRs

All of Peters papers can be found on his website at y1pwe.co.uk/RAProgs/index.html. He has many RTL-SDR radio astronomy related resources there, so check it out if you are interested.

RTL-SDR for Budget Radio Astronomy

With the right additional hardware, the RTL-SDR software defined radio can be used as a super cheap radio telescope for radio astronomy experiments such as Hydrogen line detection, meteor scatter and Pulsar observing.

Hydrogen Line

Marcus Leech of Science Radio Laboratories, Inc has released a tutorial document titled “A Budget-Conscious Radio Telescope for 21cm“, (doc version) (pdf here) where he shows:

Two slightly-different designs for a simple, small, effective, radio telescope capable of observing the Sun, and the galactic plane in both continuum and spectral modes, easily able to show the hydrogen line in various parts of the galactic plane.

He uses the RTL-SDR as the receiving radio with an LNA (low noise amplifier) and a couple of line amps, a 93cm x 85cm offset satellite dish (potential dish for sale here, and here), and GNU Radio with the simple_ra application. In his results he was able to observe the spectrum of the Galactic Plane, and the Hydrogen Line. Some more information about this project can be found on this Reddit thread.

Here is a link to an interesting gif Marcus made with his RTL-SDR, showing a timelapse of recorded hydrogen emissions over 24 hours. Reddit user patchvonbraun (a.k.a Marcus Leech) writes on this thread an explanation of what is going on in the gif.

Interstellar space is “full” of neutral hydrogen, which occasionally emits at photon at a wavelength of 21cm–1420.4058Mhz.

If you setup a small dish antenna, and point at a fixed declination in the sky, as that part of the sky moves through your beam, you can see the change in spectral signature as different regions, with different doppler velocities move through your beam.

This GIF animation shows 24 hours of those observations packed into a few 10s of seconds.

 Marcus’ setup is shown below.

RTL-SDR Radio Telescope Setup

And here is just one of his many resulting graphs shown in the document showing the Hydrogen line.

RTL-SDR Radio Telescope Hydrogen Line

A similar radio astronomy project has previously been done with the Funcube. More information about that project can be found in this pdf file. In that project they used the Funcube, a 3 meter satellite dish and the Radio Eyes software.

However, in this Reddit post patchvonbraun explains that the Funcube’s much smaller bandwidth is problematic, and so the rtl-sdr may actually be better suited for radio astronomy.

This image is from the Funcube project document.

Funcube Radio Telescope Project

Another related project is the Itty Bitty Telescope (IBT), which does not use SDR, but may be of interest.

Meteor Scatter

Meteor scatter works by receiving a distant but powerful transmitter via reflections off the trails of ionized air that meteors leave behind when they enter the atmosphere. Normally the transmitter would be too far away to receive, but if its able to bounce off the ionized trail in the sky it can reach far over the horizon to your receiver. Typically powerful broadcast FM radio stations, analog TV, and radar signals at around 140 MHz are used. Some amateur radio enthusiasts also use this phenomena as a long range VHF communications tool with their own transmitted signals. See the website www.livemeteors.com for a livestream of a permanently set up RTL-SDR meteor detector.

In Europe typically the Graves radar station can be used for meteor scatter experiments. Graves is a space radar based in France which is designed to track spacecraft and orbital debris. If you are in Europe you can also make use of the Graves radar simply by tuning to its frequency of 143.050 MHz and listening for reflections of its signal bouncing off things like meteors, planes and spacecraft. Since Graves points its signal upwards, it’s unlikely that you’ll directly receive the signal straight from the antenna, instead you’ll only see the reflections from objects.

In other countries old and distant analogue TV stations can be used or FM transmitters can also be used.

To set meteor scatter up, simply use an outdoor antenna to tune to a distant transmitter. It should be far enough away so that you can not be receive the transmitter directly, or the signal should be weak. If you detect a meteor the signal will briefly show up strongly at your receiver. Performance can be enhanced by using a directional antenna like a Yagi to point upwards at the sky in the direction of the transmitter.

We have several post about meteor scatter available on the blog here. Read through them to get a better understanding of the ways in which it can be monitored. You may also be interested in Marcus Leech’s tutorial where he uses the RTL-SDR to detect forward meteor scatter. (doc here) (pdf here)

Pulsar Observing

A pulsar is a rotating neutron star that emits a beam of electromagnetic radiation. If this beam points towards the earth, it can then be observed with a large dish antenna and a radio, like the RTL-SDR. 

Pulsars create weakly detectable noise bursts across a wide frequency range. They create these noise bursts at precise intervals (milliseconds to seconds depending on the pulsar), so they can be detected from within the natural noise by performing some mathematical analysis on the data. Typically a few hours of data needs to be received to be able to analyze it, with more time needed for smaller dishes.

One problem is that pulsar signals can suffer from ‘dispersion’ due to many light years of travel through the interstellar medium. This simply means that higher frequencies of the noise burst tend to arrive before the lower frequencies. Mathematical de-dispersion techniques can be used to eliminate this problem enabling one to take advantage of wideband receivers like the RTL-SDR and other SDRs. The more bandwidth collected and de-dispersed, the smaller the dish required for detection.

Pulsar detection requires some pretty large antennas, and a good understanding of the techniques and math required for data processing so it is not for the beginner. See the previous Pulsar posts on this blog for more information.


If you enjoyed this tutorial you may like our ebook available on Amazon.

The Hobbyist’s Guide to the RTL-SDR: Really Cheap Software Defined radio.