Tagged: meteor scatter

Starlink Doppler Reflections Caught with an RTL-SDR

Over on YouTube William IU2EFA has been uploading multiple short "meteor scatter" videos. This involves using an RTL-SDR to briefly receive distant radio stations via the RF signal reflecting off the ionized trail left by meteors entering the atmosphere. However, in a similar fashion satellites orbiting the earth can also reflect distant radio stations. 

In one of his latest videos William caught a train of Starlink satellites reflecting the signal from the Graves radar in France. To do this he uses a 10 element VHF Yagi, and an RTL-SDR running with HDSDR and SpectrumLab. In the video you can see and hear the change in frequency caused by the doppler shift.

Starlink is a SpaceX project aiming to bring ubiquitous satellite internet to the entire world. Currently 358 Starlink satellites are in orbit, and the end goal is to have 12000.

IU2EFA Starlink radar Graves doppler reflection

Logging Meteor Scatter Observations Online

Thank you to Florent for submitting his website which contains a live log of his meteor scatter observations. Meteor scatter occurs when radio signals reflect off the ionized trail left behind by meteors when they enter the atmosphere. This trail is highly RF reflective, so it can allow distant radio stations to be briefly received.

His set up consists of an RTL-SDR dongle running on a Raspberry Pi 3. His antenna is a homemade 6 element Yagi. Florent is based in France and listens for reflections from the Graves radar at 143.05 MHz. His software captures 768 Hz worth of bandwidth every 0.5s, and then uploads and displays the spectrum plot on his website. When the Graves radar signal is visible on the spectrum, it is an indication of a meteor having entered the atmosphere (or possibly an aircraft).

If you are interested in other peoples live meteor scatter streams, then there is another site at livemeteors.com which displays a live video of an SDR# screen looking for meteor echoes.

Some Meteor Scatter Logs by Florent
Some Meteor Scatter Logs displayed on Florents website

UFO Detection with an Image Intensifier and FM Reflections Received with an RTL-SDR

Recently reader Syed Ali wrote in and wanted to share some experiments in UFO detection that he's been performing with an image intensifier and an RTL-SDR. The RTL-SDR is used to detect a distant FM radio station reflecting from objects passing overhead, and the image intensifier is a sensitive camera that helps make events like satellite passes more visible. In his video some visually detected objects like a possible satellite pass or aircraft at 0:09 to 0:18 and 0:55 to 1:00 seem to correlate with a radio reflection. 

Syed Ali writes:

These are three small video clips taken from an hour observation. I had an idea how to use RTL-SDR for meteor detection. So I tuned my rtl-sdr to a distant FM Radio station behind a mountain range from my own location. Any object flying over mountain range can be detected by receiving the transmission of that FM radio station via its signal being reflected from that flying object.

So I set up my image intensifier pointing towards the sky in the same direction above those ranges. I recorded a few unknown objects in the video viz a viz their RF reflections and Dopplers in sdrsharp software.

You will also notice a strange laser beam which seems to be coming from the sky to the ground because it encircles and changes its position around the field of view of my image intensifier. Moreover, in the last few seconds of the clip, you will see a strange object hovering and then taking a U turn near left edge of the video frame. Those were indeed strange findings. Please see for yourself and do leave your comments. Thanks. Observation Time : 1:20 am to 2:30 am, 21 October 2018

We're a little skeptical about the UFO claims though, as the lasers may just be car headlights, and the fast moving object may just be a bug reflecting light, and the lack of radio reflections around those points seem to confirm that nothing large is there.

UFO Detection using Image Intensifier and RTL-SDR

Echoes: An RTL-SDR Tool for Meteor Scatter Detection

Echoes Running
Echoes Running

Thanks to "gmbertani" for letting us know about his recently released RTL-SDR compatible software called "Echoes". Echoes is a Windows, Linux and Raspberry Pi/Arch compatible tool that can be used together with an RTL-SDR and appropriate antenna to monitor for meteor scatter detections.

Meteor scatter works by receiving a distant but powerful transmitter via signal reflections off the trails of ionized air that meteors leave behind when they enter the atmosphere. Normally the transmitter would be too far away to receive, but if its able to bounce off the ionized trail in the sky it can reach far over the horizon to your receiver. Typically powerful broadcast FM radio stations, analog TV, and radar signals at around 140 MHz are used. By listening to these signal blips it can be possible to estimate the number of meteors falling.

Below we paste the official description and feature list of Echoes, and at the end is a video demonstrating Echoes in action:

Echoes it's a radio spectral analysis software for RTL-SDR devices, designed for meteor scattering purposes.

Echoes doesn't demodulate neither decode any human-made signal. Its main goal is to analyze and record the total power of natural signals and generate screenshots and tabular data (CSV, GNUplot) output in presence of particular peaks in a selected narrow range of frequencies. Since there is no demodulation, there is no provision for audio listening, except for a notify sound when an event has been recorded.

Features

  • Captures waterfall spectra as PNG screenshots and statistics data files.
  • Optionally generates GNUplot data files
  • Multiple instances can manage separate dongles plugged in the same computer
  • Three operating modes: continuos (records data only), periodic (captures data and screenshot every X seconds) and automatic (record data and screeshot each time a customizable (S-N) treshold is exceeded)
  • HTML report production
  • Installers ready for Windows7++ and RPMs / SRPMs for Linux
  • xz binary package for Raspberry PI / Arch distro
  • It can run headless, recording GNUplot and statistic data only

Meteor Logger: A Tool for Counting Meteor Detections with an RTL-SDR

Thanks to Wolfgang Kaufmann for submitting news about his new software called ‘Meteor Logger’. This tool can be used to count the number of meteors entering the atmosphere which have been detected by a meteor scatter setup using an RTL-SDR or similar SDR.

Wolfgang writes about his software:

I have developed a new piece of software “Meteor Logger” to detect and log radio meteors from the digital audio stream of a PC-soundcard. It is based on Python 3. It is addressed to those meteor enthusiasts who want get the most information out of forward scattering of radio waves off meteor trails. “Meteor Logger” do not display spectrograms, it delivers an instantaneous and continuous numerical output of the detected signal with a high time resolution of about 11 ms. Thereby a radio meteor signal is not detected on the basis of an amplitude threshold but on its signature in the frequency domain. “Meteor Logger” has a built in auto notch function that may be helpful in case of a persistent strong interference line. From these data not only hourly count rates can be derived but it is also possible to easily study power profiles of meteors as well as Doppler shifts of head echoes.

As receiving front end a RTL-SDR is fine, if you strive after a very high signal resolution you may use a Funcube Dongle Pro. I employed SDR# to run the RTL-SDR. GRAVES-radar is used as transmitter. The added screenshot shows this setup together with “Meteor Logger”.

Additionally I wrote an also Python 3 based post processing software “Process Data” that allows for clearing the raw data, viewing and analysing them and exporting them in different ways (e.g. as RMOB-file for opening with “Cologramme Lab” of Pierre Terrier, see added screenshot).

Everything else you may find on my website http://www.ars-electromagnetica.de/robs/download.html

Meteor Logger
Meteor Logger

Meteor scatter works by receiving a distant but powerful transmitter via reflections off the trails of ionized air that meteors leave behind when they enter the atmosphere. Normally the transmitter would be too far away to receive, but if its able to bounce off the ionized trail in the sky it can reach far over the horizon to your receiver. Typically powerful broadcast FM radio stations, analog TV, and radar signals at around 140 MHz are used. Some amateur radio enthusiasts also use this phenomena as a long range VHF communications tool with their own transmitted signals. See the website www.livemeteors.com for a livestream of a permanently set up RTL-SDR meteor detector.

Using National Weather Service Stations for Forward Scatter Meteor Detection

Over on his blog Dave Venne has been documenting his attempts at using National Weather Service (NWS) broadcasts for forward scatter meteor detection with an RTL-SDR. Forward scatter meteor detection is a passive method for detecting meteors as they enter the atmosphere. When a meteor enters the atmosphere it leaves behind a trail of highly RF reflective ionized air. This ionized air can reflect far away signals from strong transmitters directly into your receiving antenna, thus detecting a meteor.

Typically signals from analog TV and broadcast FM stations are preferred as they are near the optimal frequency for reflection of the ionized trails. However, Dave lives in an area where the broadcast FM spectrum is completely saturated with signals, leaving no empty frequencies to detect meteors. Instead Dave decided to try and use NWS signals at 160 MHz. In the USA there are seven frequencies for NWS and they are physically spaced out so that normally only one transmitter can be heard. Thus tuning to a far away station should produce nothing but static unless a meteor is reflecting its signal. Dave however does note that the 160 MHz frequency is less than optimal for detection and you can expect about 14 dB less reflected signal from meteors.

So far Dave has been able to detect several ‘blips’ with his cross-dipole antenna, RTL-SDR and SDR#. He also uses the Chronolapse freeware software to perform timelapse screenshots of the SDR# waterfall, so that the waterfall can be reviewed later. Unfortunately, most of the blips appear to have been aircraft as they seem to coincide with local air activity, and exhibit a Doppler shift characteristic that is typical of aircraft. He notes that the idea may still work for others who do not live near an airport.

A possible meteor detection in SDR#.
A possible meteor detection in SDR#.
Aircraft detection doppler
Aircraft detection doppler

We note that if you are interested in detecting aircraft via passive forward scatter and their Doppler patterns, then this previous post on just that may interest you.

A Screenshot based Meteor Scatter Detector for HDSDR

Over on our forums Andy (M0CYP) has posted about his new meteor scatter detection program which works with HDSDR and any supported SDR like an RTL-SDR. It works in an interesting way, as instead of analyzing sound files for blips of meteor scatter activity it analyzes screenshots of the HDSDR waterfall. The software automatically grabs the screenshots and determines if a signal is present on any given frequency. You can set a preconfigured detection frequency for a far away transmitter, and if the waterfall shows a reflection it will record that as a meteor.

Meteor scatter works by receiving a distant but powerful transmitter via reflections off the trails of ionized air that meteors leave behind when they enter the atmosphere. Normally the transmitter would be too far away to receive, but if its able to bounce off the ionized trail in the sky it can reach far over the horizon to your receiver. Typically powerful broadcast FM radio stations, analog TV, and radar signals at around 140 MHz are used. Some amateur radio enthusiasts also use this phenomena as a long range VHF communications tool with their own transmitted signals. See the website www.livemeteors.com for a livestream of a permanently set up RTL-SDR meteor detector (although that site does not use Andy’s software).

Andy writes that his meteor scatter detection software is still in beta so there might be some bugs. You can write feedback on the forum post, in the comments here, or contact Andy directly via the link on his website.

Andy's screenshot based meteor detection software
Andy’s screenshot based meteor detection software

Helping to Raise Funds for the Canadian Centre for Experimental Radio Astronomy (CCERA)

Patchvonbraun (aka Marcus Leech) is one of the pioneers in using low cost SDR dongles for amateur radio astronomy experiments. In the past he’s shown us how to receive things like the hydrogen line,  detect meteors and observe solar transits using an RTL-SDR. He’s also given a good overview and introduction to amateur radio astronomy in this slide show.

Now Marcus and others are starting up a new project called the “Canadian Centre for Experimental Radio Astronomy (CCERA)”. They write that this will be an amateur radio astronomy research facility that will produce open source software and hardware designs for small scale amateur radio astronomers. Currently they also already have a hydrogen line telescope set up, which is producing live graphs and data. From their recent posts it also looks like they’re working on building antennas for pulsar detection. They also have a GitHub available for any software they produce at https://github.com/ccera-astro.

Currently CCERA is looking for donations over at gofundme, and they are hoping to eventually raise $25k. They write:

About CCERA:

Radio astronomy is one of the most important ways to observe the cosmos. It is how we learned about the existence of the afterglow of the big bang (the cosmic microwave background), it is how we observe huge swaths of the universe that are otherwise obscured by dust. Most of what’s going on out there can’t be seen with visible light.

Astronomy has traditionally been one of the areas in science where dedicated non-professionals have continued to make an enormous contribution to the field. Optical astronomy requires little more than a telescope and knowledge.

Radio astronomy has, up until recently, required a lot more skill and resources. However, technology has advanced enough that small groups could be making serious contributions to radio astronomy. With the right sorts of software and information, many dedicated non-professionals could be doing good work in the area, and CCERA intends to help make that a reality.

CCERA will be producing open source software and hardware designs to help non-professional and professional radio astronomers alike, documenting them, and helping people get up to speed so that they can use these powerful tools themselves. Our GitHub repository is: https://github.com/ccera-astro

CCERA will also be operating its own radio astronomy facilities, initially in Ontario, Canada. These will serve as a test-bed for our own designs, as a place for us to train interested people in the operation of low cost radio astronomy equipment, and will also be used for real radio astronomy work. All our data will be publically-available.

About us:

Roughly 10 years ago, I and a number of others started a project to restore a large, historic, satellite earth station antenna at Shirleys Bay in Ottawa. Our goal was to bring the dish back on-line for use in amateur radio astronomy, research, and importantly, educational outreach about science, and radio astronomy.

The project came to a sudden end back in 2013/14 when the owner of the dish (The Canadian Space Agency) needed to dismantle it to make way for other occupants of the site.

However, during that period, we became fascinated with the possibilities that opening up radio astronomy to skilled non-professionals could bring.

Since then, our group has been working on another far lower cost project to build our own a specialized radio telescope somewhere in the Rideau Valley area. Many of our group live in the area, and Marcus lives in Smiths Falls. With good attention to the usability of our designs and open publication of our tools under appropriate open source licenses, our work should be replicable by others. We thus hope to kick off a new era in non-professional radio astronomy.

What we need the money for:

We’ve secured a small office in the Gallipeau Center outside of Smiths Falls, and will be able to erect our specialized antenna arrays over the coming year.

While we have a lot of the equipment we’ll need, we’ll have more equipment to buy, and on-going expenses to cover, including rent, insurance, miscellaneous mechanical construction materials (lumber, metal, etc). We also need to cover expenses relating to incorporation as a not-for-profit.

Our goal is to provide a test facility for small-scale radio astronomy research, and to develop techniques that allow small organizations and educational institutions to run their own small-scale radio astronomy observing programs.

If we are successful, in addition to making our designs and software available under open source licenses, we’ll be holding regular public lectures, host training seminars, host school groups, etc. We will also produce videos of our work for those who cannot visit us directly in Ottawa. We want to make some of the techniques of “big science” accessible and understandable.

We can’t do it without the help of the public, who, we hope, will become our students, collaborators, and ongoing supporters.

We will also make all of our data available to the public without fee or restrictions. We believe in openness in scientific endeavours, even small ones such as ours.

Marcus Leech
(tentative) Director
Canadian Centre for Experimental Radio Astronomy
www.ccera.ca

If you have even a passing interest in radio astronomy please consider donating, as CCERA’s work may open up exciting new possibilities for amateur radio astronomers with low cost SDR dongles.

The pulsar antenna being built at CCERA.
The pulsar antenna being built at CCERA.