Over on his blog "ele y ciencia" has written up two very useful blog posts - one on how to decode AFSK signals from scratch and the other on how to reverse engineer any unknown digital signal. The blog is written entirely in Spanish, but Google translate does a decent enough job at getting the message across (in Chrome right click anywhere on the page and select Translate to English or use the Google translate webpage).
The first post is about decoding an AFSK protocol and explains that you need to record the signal with an RTL-SDR or other SDR, apply a low pass filter to obtain the signal envelope and then apply thresholding with the known baud rate to obtain the demodulated digital signal. The tutorial is high level and just explains the process, but doesn't show how to do it in any software. Later on in the post he goes on to show how he reverse engineered a train-land radiotelephone system and a TCM3105 modem chip which utilizes a FSK system.
In the second post he shows how to decode any unknown digital signal using just an RTL-SDR and Audacity. He starts off with finding and recording an unknown digital signal with an RTL-SDR and then reverse engineers it in a sort of manual fashion without using any tools like Universal Radio Hacker. The post goes through the full details and steps that he took, and in the end he gets data out of the signal discovering that it is data from a Fleet Management System used in his country for monitoring data such as speed and engine data from commercial vehicles like trucks and buses.
The two posts are very detailed and could be an excellent reference for those interested in reverse engineering some unknown digital signals in your area.
Decoding an Unknown "Fleet Management" signal from scratch.
YouTube user mutezone has uploaded a video showing some data communication packets from the International Space Station (ISS) being received with the RTL-SDR. To receive the packets he used SDRSharp, and piped the audio using a virtual audio cable to the Qtmm AFSK1200 Decoder.
I tried to get the ISS (International Space Station) data comms on 145.825 MHz while the satellite was in orbit close to my location & it worked, even though it can go off frequency due to atmospherics & such. On this day, I caught it when it orbited twice around my location in the space of almost three hours. The data comms was decoded on the 2nd attempt. The antenna I used was an omni placed outdoors, & also using a TV + radio signal booster.
For anyone interested in getting the ISS, you have to wait until it orbits close to your location, & I fully recommend a decent aerial that should be placed externally. You can check the ISS tracker websites to see live updates of when & where it will orbit. Here is a link to one website…
NOTE: Recent changes to WordPress seem to have broken the audio on this page. Please use the newSignal Identification Wikiwhich has many new signals. Anyone can edit and improve the information on the pages on the wiki.
A guide to help you identify some amateur and utility digital radio signals and sounds which you may find on the frequency spectrum. Most of these have been received with an RTL-SDR software defined radio. I will be slowly adding more to this list over time. If you enable stereo mix and pass the sample audio to an appropriate decoding program the sample audio should be decodable for most samples.
If you would like to suggest a modification or contribute a sample, please send a sample, waterfall image and information about the signal to [email protected], or post in the comments. (Note I am currently backlogged with contributed signals, if I haven’t replied or added your signal yet it will be done within a month or two).
Description:Terrestrial Trunked Radio (TETRA), also know as Trans-European Trunked Radio is a professional mobile radio and two-way transceiver (walkie-talkie) specification. Modulated with π/4 DQPSK. Audio sample recorded in NFM mode.
Common – 87.5 to 108.0 MHz OIRT – 65 to 74 MHz Japan – 76 to 90 MHz Consumer Wireless Devices – ~860 MHz
Mode: WFM
Bandwidth: 30000 Hz
Description: Stereo Wideband FM signal. Used for typical broadcast radio, and in some wireless headsets and speakers. This particular signal is from an AKG headset.
Top signal is WFM transmitted with low amplification. Bottom signal is WFM transmitted with high amplification.
Description: Single side band, specifically upper side band. Used in the HF band by amateur radio hams and aircraft weather reports. Single side band saves bandwidth.
Description: (Previously Unidentified Signal 5). Numbersstations are thought to transmit encoded information for various spy agencies around the world. They are recognized by a voice reading a sequence of numbers or words. This is a Cuban Numbers Station which has a data portion and a voice portion. Sound sample recorded in AM mode.
Thanks to Andrew from the comments section for the ID.
Description: (Previously Unidentified Signal 2). An Aircraft Communications Addressing and Reporting System (ACARS) data link that aircraft use to communicate short messages over long distances using HF signals.
Thanks to Andrew from the comments section for the ID.
Description: (Previously unidentified signal 10). Identified in the comments section by Ronen as an Asynchronous Frequency Shift Keying (AFSK) pager link. It is easier to transmit the FSK pager signal to the transmitter site as AFSK.
Description: Previously unidentified signal (11). Identified in the comments by various contributors as multiple overlapping RTTY signals sent by ham radios.
Voice Frequency Telegraph
Sample Audio:
Typical Frequency: 7453.50 KHz USB
Description: Previously unidentified signal (13). VFT or Voice Frequency Telegraph is one of several systems for sending multiple RTTY signals over one voice-bandwidth radio channel.
Portable Traffic Lights
Sample Audio:
Found Frequency: 154.463 MHz
Description: Previously unidentified signal (17). Identified by Peter via email as being signals sent from portable traffic lights that are often used at roadworks.
X2 on iDEN
Sample Audio: –
Found Frequency: 154.463 MHz
Description: iDEN is an acronym for Integrated Digital Enhanced Network and is a technology developed by Motorola. It is a type of trunked radio with cellular phone benefits.
If you know what any of these signals are please write in the comments. You can also submit any unidentified signals you would like to be added to [email protected]
(1)
Sample Audio:
Found Frequency: 171.3 MHz
Description: Recognized by DSD as a NXDN96 signal, but is disputed in the comments section. (Possibly a bug in DSD).
(3) – ALE?
Sample Audio:
Found Frequency: HF Band
Description: Sound sample recorded in USB mode. Potentially some sort of 2G ALE signal. Similar signal shown in balints HF tour video. Possible a weather map transmitted from Tokyo as noted in the comments section by Syd, or 4xFSK from China as identified by K2RCN in the comments.
(4)
Sample Audio:
Found Frequency: HF Band
Description: Periodic pulses. Sound sample recorded in USB mode. Possibly a GlobeWireless signal as identified in the comments section by K2RCN.
(6)
Sample Audio:
Found Frequency: 152.652 MHz
Description: Continuous signal. Audio sample recorded in NFM.
(7)
Sample Audio:
Found Frequency: 162.863 MHz
Description: Continuous bursts. Audio sample recorded in NFM.
(8)
Sample Audio:
Found Frequency: 457.168 MHz
Description: Audio sample recorded in NFM.
(10)
Sample Audio:
Found Frequency: 452.325 Mhz
Description: Sent in over email. Sounds like Motorola Type II smartnet, but Unitrunker does not recognize.
(12)
Sample Audio:
Found Frequency: 154.646 MHz
Description: Sent in over email. Repeats every minute.
(14)
Sample Audio:
Found Frequency: 433 MHz
Description: Sent in over email.
Hello! I was listening in the 433MHz band and saw this blip (about 1-2sec) on the waterfall on 433.873 (Millville, MA). It repeats about every 30-50 seconds, though doesn’t seem to be the same every time. Maybe a wireless instrument of some type (weather or something?). The only clear sound of it I could get was with AM, about a 4.2kHz wide filter (rtl-sdr, gqrx linux). Any ideas? Thanks!
(15)
Sample Audio:
Found Frequency: 455 MHz
Description: Sent in over email.
(16)
Sample Audio:
Found Frequency: 173.262 MHz
Description: Sent in over email.
(18)
Sample Audio: None
Found Frequency: ~856 MHz
Description: Sent in over email.
The antenna has a Yagi pointed to West from 23.5° South latitude, 47.46° West longitude. The signal can be local or from the sky. The signal is horizontal polarized.
(19)
Sample Audio:
Found Frequency: ~409.6 MHz
Description: Sent in over email. Recorded in NFM mode.