Tagged: backscatter

Transmitting radio waves without power

Researchers have discovered a way to transmit information wirelessly without power, simply by opening an closing a switch that connects a resistor to an antenna. This effect does not violate any physics - it works because the random thermal noise signature of the transmitter changes when the resistor is connected or disconnected.

The researchers used an RTL-SDR with high gain horn antenna and low noise amplifiers to measure changes in the thermal noise signature of the transmitter.

They also compare their idea to backscatter devices, which are another form of passive RF communications that make use of ambient radio signals such as from TV transmitters. They note that their thermal noise approach has a lower data rate and range compared to backscatter, but their next goal is to try and improve this.

Thermal Noise Transmitter Test
Thermal Noise Transmitter Test

An RTL-SDR Based Wireless Backscatter Soil Moisture Sensor Network

Recently researcher Spyros Daskalakis wrote in to us and wanted to share his Masters thesis research which is titled ‘Environmental Scatter Radio Sensors with RF Energy Harvesting‘. The research involved creating a low cost, low power (200 microwatt) and yet long range (up to 250m) sensor network for monitoring soil moisture on farms. An RTL-SDR dongle is utilized to receive data from the sensors and MATLAB is used to decode the data.

One interesting innovation is that the sensors transmit data via a backscatter technique which is similar to how RFID tags are read. A carrier emitter is placed in the center of a cluster of sensors and the sensors receive RF bursts from it. The sensor antenna acts as a carrier reflector, and information is modulated onto the reflected signal by changing the antenna-load reflection coefficients according to the sensor reading. This method allows the sensors to only require extremely small amounts of power from a button battery or solar panel in order to transmit at distances of up to 250m. Spyros also proposes using wireless RF energy harvesting techniques which could harvest the electricity needed to power the circuit directly from the carrier emitters or powerful local FM stations.

Spyros’ thesis is available here, and a research paper here.

Backscatter Sensors and RTL-SDR. Received backscatter spectrum.
Backscatter Sensors and RTL-SDR (left). Received backscatter spectrum (right).

Technical University of Crete - Backscatter Radio Sensor Network Demo